相似三角形的性质【学习目标】1.掌握相似三角形的性质定理的内容及证明,使学生进一步理解相似三角形的概念;2.能运用相似三角形的性质定理来解决有关问题;3.通过由特殊情况猜想到一般情况,渗透由特殊到一般的数学思想,让学生感受数学的和谐美,并进一步养成严谨科学的学习品质.【学习重点】理解相似三角形的性质定理并能初步运用.【学习难点】相似三角形的性质定理的证明.情景导入生成问题1.什么叫相似三角形?2.如何判定两个三角形相似?3.相似三角形的对应边有什么特征?对应角有什么特征?自学互研生成能力知识模块一相似三角形对应边上的高之比等于相似比,面积之比等于相似比的平方阅读教材P71~P72的内容.问题:两个三角形相似,除了对应边成比例,对应角相等之外,还可以得到许多有用的结论.例如在右图中,△ABC和△A′B′C′是两个相似三角形,相似比是k,其中AD、A′D′分别为BC、B′C′边上的高,那么AD、A′D′之间有什么关系?这两个三角形的面积之比又是多少?归纳:△ABD和△A′B′D′都是直角三角形,且∠B=∠B′,因为有两个角对应相等,所以这两个三角形相似,因此==k.由此可以得出结论:相似三角形对应边上的高的比等于相似比.由==k,可得==·=k2.由此可以得出结论:相似三角形面积的比等于相似比的平方.知识模块二相似三角形对应角的平分线之比等于相似比,对应边上的中线之比等于相似比、周长之比等于相似比思考:如图,△ABC与△A′B′C′相似,AD、A′D′分别为对应边上的中线,BE、B′E′分别为对应角的平分线,那么它们之间是否有与对应边上的高类似的关系?这两个三角形的周长又有什么关系?以周长为例探究一下:∵△ABC∽△A′B′C′,∴===k,∴AB=kA′B′,BC=kB′C′,AC=kA′C′,∴===k结论:相似三角形对应角的平分线之比等于相似比.相似三角形对应边上的中线之比等于相似比.相似三角形的周长之比等于相似比.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一相似三角形对应边上的高之比等于相似比,面积之比等于相似比的平方知识模块二相似三角形对应角的平分线之比、对应边上的中线之比、周长之比等于相似比检测反馈达成目标1.如果两个相似多边形面积的比为1∶5,则它们的相似比为(D)A.1∶25B.1∶5C.1∶2.5D.1∶2.如图,在△ABC中,两条中线BE、CD相交于点O,则S△DOE∶S△COB=(A)A.1∶4B.2∶3C.1∶3D.1∶23.已知,△ABC与△DEF相似,且对应边的比为∶1,则S△ABC∶S△DEF=__2∶1__.4.如图,在△ABC中,DE∥BC,=,△ADE的面积是8,则△ABC的面积为__18__.(第4题图)(第5题图)5.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则__=__.6.已知两个相似三角形两条对应边上的中线的长是3cm和5cm,那么它们的相似比是多少,对应高的比是多少?解:3∶5,3∶5课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________