第二十三章旋转23.1图形的旋转23.1图形的旋转(第2课时)学习目标1.掌握对应点到旋转中心的距离相等.2.掌握对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等以及三个以上图形的旋转的基本性质的运用.学习过程一、自主思考1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?二、学习新知【例1】如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置,以及旋转后的三角形.【例2】如图,四边形ABCD是边长为1的正方形,且DE=14,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连接EF,那么△AEF是怎样的三角形?三、课堂练习1.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()2.在旋转图形中,各对应点与旋转中心的距离.3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.四、自我检测1.如图1,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是,它们之间的关系是,其中BD=.2.如图2,自正方形ABCD的顶点A引两条射线分别交BC,CD于E,F两点,∠EAF=45°.在保持∠EAF=45°的前提下,当点E、F分别在边BC,CD上移动时,BE+DF与EF的关系是.3.如图3,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?4.如图4,以△ABC的三个顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形的面积之和是多少?布置作业1.必做题:课本第61页练习第1,2题.2.选做题:课本第61页练习第3题.参考答案一、自主思考1.把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角.2.旋转前后重合的点就是对应点.3.能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°,120°,180°,240°,300°形成的.二、学习新知例1:解:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD.根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB'=ACD,又由对应点到旋转中心的距离相等,即CB=CB',就可确定B'的位置,如图所示.例2:解:由△ABF是△ADE的旋转图形,可直接得出旋转中心为点A和旋转角为∠DAB=90°.根据旋转前后的对应线段相等,得AF=AE.由勾股定理很容易得到AE=❑√174,即AF=❑√174.因为△ABF与△ADE是完全重合的,所以△AEF是直角三角形.因为AE=AF,所以连接EF得△AEF为等腰直角三角形.三、课堂练习1.D2.相等3.解:∵四边形ABCD、四边形AKLM都是正方形,∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°,∴△ADM是以A为旋转中心、∠BAD为旋转角由△ABK旋转而成的,∴BK=DM.四、自我检测1.△ACE全等CE2.相等3.全等4.π2