21.3二次根式的加减【课前预习学案】一、预习目标1、了解同类二次根式的概念,会识别同类二次根式。2、会利用二次根式的加减运算法则进行简单计算。二、温故而知新1、同类项:;合并同类项的法则:;计算:(1)3a+3a=(2)4ab-ab=2、最简二次根式的概念:3、化简:(1)=,=(2)=,=(3)=,=。三、自主预习1、通过前面的二次根式的化简,你发现每一组化简后的最简二次根式有什么相同的地方?有什么不同的地方?类比同类项可以称每一组的二次根式为什么根式?2、阅读课本第10页的内容,思考:(1)对同类二次根式概念的认识应把握几点?(2)判断几个二次根式是否为同类二次根式,应该分几步做?关键是哪一步?(3)最简二次根式与同类二次根式的联系与区别?3、类比合并同类项,尝试计算下列各式:(1)(2)(3)3+4=。【课中实施学案】一、学习目标1、了解同类二次根式的概念,会识别同类二次根式。2、经历二次根式的加减法运算法则的形成过程,感悟类比思想。3、会利用二次根式的加减运算法则进行计算。二、学习重点、难点:重点:同类二次根式的概念、识别,会运用二次根式的加减运算法则进行计算。难点:会运用二次根式的加减运算法则进行计算。三、自主学习(相信自己,一定能行!)1、同类二次根式例1、下列根式中,与是同类二次根式的是()A、B、C、D、变式训练一:1、下列不是同类二次根式的一组是()A、与B、与C、与D、与交流拓展:如果不化简变式训练一中的每一组二次根式,你能否快速的确定正确选项呢?2、二次根式的加减法(1)在预习2题中,你是如何计算的?解答的依据是什么?(交流)(2)二次根式加减的法则:二次根式相加减,应先,然后小组合作探究:1、二次根式加减运算的实质:2、二次根式加减运算的步骤:(3)典型例题(可要认真学学哦!)例1、计算:(1)+(2)+3例2、计算:-2+5四、课堂小结(会思考、会总结,才会有收获哦!)通过本节课的学习,你有哪些收获?还有哪些疑惑?五、当堂检测1、在下列根式中与是同类二次根式的是()A、B、C、D、a2、下列计算正确的是()A、B、C、D、3、若与都是最简二次根式,且它们是同类二次根式,则a=。4、一个长方形两边为a+,求这个长方形的面积和周长。附参考答案温故而知新:1、同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项法则:合并同类项的法则同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。2、最简二次根式的概念:√2、3√3、5√5是最简二次根式。从上面的例子可以看出,遇到一个二次根式,将它化简会给解决问题带来方便.满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.3、化简:243412自主预习:3、类比合并同类项,尝试计算下列各式3325自主学习:例1B变式训练一:1、C当堂检测:1、C2、A3、54、a2-b4a