电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

福建省厦门市集美区灌口中学九年级数学上册 21.3 二次根式的加减教案 新人教版VIP免费

福建省厦门市集美区灌口中学九年级数学上册 21.3 二次根式的加减教案 新人教版_第1页
1/3
福建省厦门市集美区灌口中学九年级数学上册 21.3 二次根式的加减教案 新人教版_第2页
2/3
福建省厦门市集美区灌口中学九年级数学上册 21.3 二次根式的加减教案 新人教版_第3页
3/3
21.3二次根式的加减教学内容含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.教学目标知识技能:在有理数的混合运算及整式的混合运算的基础上,使学生了解二次根式的混合运算以前所学知识的关系,在比较中求得方法,并能熟练地进行二次根式的混合运算.数学思考:对二次根式的混合运算与整式的混合运算及数的混合运算作比较,要注意运算的顺序及运算律在计算过程中的作用.解决问题:在多解中进行比较,寻求有效快捷的计算方法.情感态度:通过本节课的学习培养学生的类比思想。重点:混合运算的法则,明确三级运算的顺序,运算律的合理使用.难点:灵活运用因式分解、约分等技巧,使计算简便.关键:由整式运算知识迁移到含二次根式的运算。教学过程一、复习引入学生活动:请同学们完成下列各题:1.计算(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy2.计算(1)(2x+3y)(2x-3y)(2)(2x+1)2+(2x-1)2老师点评:这些内容是对八年级上册整式运算的再现.它主要有(1)单项式×单项式;(2)单项式×多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.二、探索新知如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.例1.计算:(1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算(1)(+6)(3-)(2)(+)(-)分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:(1)(+6)(3-)=3-()2+18-6=13-3(2)(+)(-)=()2-()2=10-7=3三、巩固练习课本P17练习1、2.四、应用拓展例3.已知=2-,其中a、b是实数,且a+b≠0,化简+,并求值.分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可.解:原式=+=+=(x+1)+x-2+x+2=4x+2∵=2-∴b(x-b)=2ab-a(x-a)∴bx-b2=2ab-ax+a2∴(a+b)x=a2+2ab+b2∴(a+b)x=(a+b)2∵a+b≠0∴x=a+b∴原式=4x+2=4(a+b)+2五、归纳小结谈一谈本节课自己的收获和感受?本节课应掌握二次根式的乘、除、乘方等运算.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

福建省厦门市集美区灌口中学九年级数学上册 21.3 二次根式的加减教案 新人教版

您可能关注的文档

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部