第七节测量旗杆的高度测量金字塔的高度-4.7测量旗杆的高度古希腊数学家、天文学家泰勒斯(Thales,约前625~前547)在数学方面划时代的贡献是引入了命题证明的思想.它标志着人们对客观事物的认识从经验上升到理论,这在数学史上是一次不寻常的飞跃,在数学中引入逻辑证明,它的重要意义在于:保证了命题的正确性;揭示各定理之间的内在联系,使数学构成一个严密的体系,为进一步发展打下基础;使数学题具有充分的说服力,令人深信不疑.证明命题是希腊几何学的基本精神,而泰勒斯就是几何学的先驱.他把埃及的地面几何演变成平面几何学,并发现了许多几何学的基本定理,如“直径平分圆周”“等腰三角形底角相等”“两直线相交,其对顶角相等”“对半圆的圆周角是直角”“相似三角形对应边成比例”等,并将几何学知识应用到实践当中去.据说,埃及的大金字塔修成一千多年后,还没有人能准确地测出它的高度.有不少人作过很多努力,但都没有成功.一年春天,泰勒斯来到埃及,人们想试探一下他的能力,就问他是否能解决这个难题.泰勒斯很有把握的说,可以,但有一个条件——法老必须在场.第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓.秦勒斯来到金字塔前,阳光把他的影子投在地面上.每过一会儿,他就让人测量他影子的长度,当测量值与他身高完全吻合时,他立刻在大金字塔在地面上的投影处作一记号,然后再丈量金字塔底到投影尖顶的距离.这样,他就报出了金字塔确切的高度.在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理.也就是今天所说的相似三角形定理第九课时●课题§4.7测量旗杆的高度●教学目标(一)教学知识点1.通过测量旗杆的高度的活动,巩固相似三角形有关知识,积累数学活动的经验.2.熟悉测量工具的使用技能,了解小镜子使用的物理原理.(二)能力训练要求1.通过测量活动,使学生初步学会数学建模的方法.2.提高综合运用知识的能力.(三)情感与价值观要求在增强相互协作的同时,经历成功的体验,激发学习数学的兴趣.●教学重点1.测量旗杆高度的数学依据.2.有序安排测量活动,并指导学生能顺利进行测量.●教学难点1.方法2中如何调节标杆,使眼睛、标杆顶端、旗杆顶部三点成一线.2.方法3中镜子的适当调节.●教学方法1.分组活动.2.交流研讨作报告.●工具准备小镜子、标杆、皮尺等测量工具各3套.●教具准备投影片一:(记作§4.7A)投影片二:(记作§4.7B)投影片三:(记作§4.7C)投影片四:调查数据表.(记作§4.7D)●教学过程Ⅰ.创设问题情境,引出课题[师]今天我们要做一节活动课,任务是利用三角形相似的有关知识,测量我校操场上旗杆的高度.请同学们回忆判定两三角形相似的有关条件.[生]对应角相等,两三角形相似;对应边成比例,两三角形相似;有两组对应边成比例且其夹角相等,两三角形相似.Ⅱ.新课讲解[师]好,外边阳光明媚,天公做美,助我们顺利完成我们今天的活动课目——测量旗杆的高度.首先我们应该清楚测量原理.请同学们根据预习与讨论情况分组说明三种测量方法的数学原理.甲组:利用阳光下的影子.(出示投影片§4.7A)图4-34从图中我们可以看出人与阳光下的影子和旗杆与阳光下的影子构成了两个相似三角形(如图4-36),即△EAD∽△ABC,因为直立于旗杆影子顶端处的同学的身高和他的影长以及旗杆的影长均可测量得出,根据可得BC=,代入测量数据即可求出旗杆BC的高度.[师]有理有据.你们讨论得很成功.请乙组出代表说明方法2.乙组:利用标杆.(出示投影片§4.7B)图4-35如图4-35,当旗杆顶部、标杆的顶端与眼睛恰好在一条直线上时,因为人所在直线AD与标杆、旗杆都平行,过眼睛所在点D作旗杆BC的垂线交旗杆BC于G,交标杆EF于H,于是得△DHF∽△DGC.因为可以量得AE、AB,观测者身高AD、标杆长EF,且DH=AEDG=AB由得GC=∴旗杆高度BC=GC+GB=GC+AD.[同学A]我认为还可以这样做.过D、F分别作EF、BC的垂线交EF于H,交BC于M,因标杆与旗杆平行,容易证明△DHF∽△FMC∴由可求得MC的长.于是旗杆的长BC=MC+MB=MC+EF.乙组代表:如果这样的话,我认为测量观测者的脚到标杆底部距离与标杆底部到旗杆底部距离适合同学A的做法.这样可以减少运算量....