户用风光互补发电系统可行性报告风光互补发电系统在牧区应用的可行性分析0摘要随着经济的快速发展,能源消耗的逐年增加,不可再生的常规能源面临日益枯竭的境况,迫切需要可再生的新型清洁能源。而风能与太阳能在众多新型能源中潜力最大,也最具开发价值。由于太阳能与风能在时间上和地域上都有很强的互补性,综合利用风能、太阳能的风光互补发电系统成为一种合理的能源系统。本文主要介绍了风光互补发电系统的结构和工作原理,分析了XX省自治区的太阳能风能资源和他们之间的互补性,总结出风光互补发电系统在牧区应用的优势性、合理性和可行性。1引言能源是人类社会生存与发展的物质基础,也是国民经济发展的重要基础。在过去的200多年里,以非可再生能源为基础的能源体系极大地推动了人类社会的发展。但是,随着石化燃料消耗的飞速增长,环境日益恶化,资源日益匮乏,利用可再生的清洁能源成为解决中国资源和环境问题的必由之路。其中太阳能和风能是最具代表性的可再生能源,也是目前研究开发的重点。太阳能和风能在时间上的互补性使风光互补发电系统在资源上具有最佳的匹配性。风光互补发电系统成为边远地区资源条件最好的独立电源系统,具有很好的应用前景。XX省地域广阔,至今还有很多地方不通电,尤其是边境、草原和沙漠地区。牧区用电负荷较小而且分散,通过大电网的延伸来供电很不现实。单独的风能或太阳能发电系统,很大程度上受到时间和地域的约束,很难实现全天候利用自然资源。风光互补发电系统利用了风能和太阳能优势,顺应了国家节能减排的政策,也解决了电网难以覆盖的边远牧区的供电问题。2风光互补发电系统简介所谓风光互补发电系统就是指将太阳能和风能联合起来、使二者优劣互补进行发电的发电系统。2.1系统结构及原理典型风光互补发电系统主要由风力发电机组、光伏阵列、第1页共8页控制器、蓄电池组、泄荷器、逆变器、直流交流负载等部分组成。系统结构图如图1所示。(1)风力发电机组利用风力机将风能转化为机械能,然后利用风力发电机将机械能转换为电能。此时的电能为交流形式且电压不稳定,所以必须通过整流器整流。然后通过控制器给蓄电池充电,直接给直流负载供电,经过逆变器对交流负载供电。(2)光伏阵列是由若干太阳电池板串联和并联构成,利用光电转换原理使太阳的辐射光通过半导体物质转变为电能。此时的电能为直流形式,可以通过控制器向蓄电池充电,并给交流、直流负载供电。(3)蓄电池在风光互补发电系统中起着储存和调节电能的作用,由多块蓄电池组成。当日照充足或风力很大而导致产生的电能过剩时,蓄电池将剩余的电能转变成化学能储存起来;当风力、日照不佳或负荷用电量增加时,则由蓄电池向负荷补充电能,并保持供电电压的稳定。(4)逆变器是一种把直流电转变为交流电的装置。风力发电机、太阳能电池和蓄电池输出的电能经控制器后都输出直流电。系统要想给交流负载供电,必须通过逆变器将输出的直流电转换成负载所需的交流电。此外,逆变器还具有自动稳压功能,确保风光互补发电系统的供电质量,提供稳定的电能,使负载正常运行。(5)控制器在整个系统中起着非常重要的作用。它将系统中各个部分连接起来,并对各部分的工作进行控制。根据日照强弱、风力大小和负荷的变化,控制器不断切换和调节蓄电池的工作状态。当电能充足时,控制器将调节后的电能送往负载,并控制太阳能电池阵列和风力发电机将剩余电能以最佳的充电电流和电压快速、平稳、高效地送入蓄电池组储存;当发电量不能满足负载需要时,控制器控制蓄电池向负载供电,同时避免蓄电池过充电和过放电现象的发生。(6)泄荷器是一种快速消耗电能的装置。当蓄电池已被充满,系统发电量大于负载用电量时,为防止蓄电池过充和确保逆变器正常工作,控制器会自动接通泄荷器,将多余的电能消第2页共8页耗掉。风光互补发电系统克服光伏、风力单独发电的不足,有效利用太阳能、风能在时间和地域上的互补性,为不易用电网供电的边远地区提供低成本、高稳定性的电能。同时,它也为当前有效解决能源危机和环境污染问题翻开了崭新的一页。2.2风光互补发电系统的特点风力发电系统利用风力发电...