电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(福建专用)高考数学一轮复习 课时规范练35 直接证明与间接证明 理 新人教A-新人教A高三数学试题VIP免费

(福建专用)高考数学一轮复习 课时规范练35 直接证明与间接证明 理 新人教A-新人教A高三数学试题_第1页
1/5
(福建专用)高考数学一轮复习 课时规范练35 直接证明与间接证明 理 新人教A-新人教A高三数学试题_第2页
2/5
(福建专用)高考数学一轮复习 课时规范练35 直接证明与间接证明 理 新人教A-新人教A高三数学试题_第3页
3/5
课时规范练35直接证明与间接证明一、基础巩固组1.要证:a2+b2-1-a2b2≤0,只需证明()A.2ab-1-a2b2≤0B.a2+b2-1-≤0C.-1-a2b2≤0D.(a2-1)(b2-1)≥02.用反证法证明结论“三角形内角至少有一个不大于60°”,应假设()A.三个内角至多有一个大于60°B.三个内角都不大于60°C.三个内角都大于60°D.三个内角至多有两个大于60°3.(2017河南郑州模拟)设x>0,P=2x+2-x,Q=(sinx+cosx)2,则()A.P>QB.Pb>0,m=,n=,则m,n的大小关系是.6.设a,b,c均为正数,且a+b+c=1,求证:ab+bc+ac≤.7.(2017河北唐山模拟)已知a>0,>1,求证:.二、综合提升组8.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值()A.恒为负值B.恒等于零C.恒为正值D.无法确定正负9.如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则()A.△A1B1C1和△A2B2C2都是锐角三角形B.△A1B1C1和△A2B2C2都是钝角三角形C.△A1B1C1是钝角三角形,△A2B2C2是锐角三角形D.△A1B1C1是锐角三角形,△A2B2C2是钝角三角形导学号〚21500552〛10.已知a,b是不相等的正数,x=,y=,则x,y的大小关系是.11.已知函数f(x)=ln(1+x),g(x)=a+bx-x2+x3,函数y=f(x)与函数y=g(x)的图象在交点(0,0)处有公共切线.(1)求a,b的值;(2)证明f(x)≤g(x).三、创新应用组12.(2017贵州安顺调研)已知函数f(x)=3x-2x,求证:对于任意的x1,x2∈R,均有≥f.13.在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q(q≠1),且b2+S2=12,q=.(1)求an与bn;(2)证明:+…+.导学号〚21500553〛课时规范练35直接证明与间接证明1.D在各选项中,只有(a2-1)(b2-1)≥0⇒a2+b2-1-a2b2≤0,故选D.2.C“三角形内角至少有一个不大于60°”即“三个内角至少有一个小于等于60°”,其否定为“三角形内角都大于60°”.故选C.3.A因为2x+2-x≥2=2(当且仅当x=0时等号成立),而x>0,所以P>2;又(sinx+cosx)2=1+sin2x,而sin2x≤1,所以Q≤2.于是P>Q.故选A.4.D∵a>0,b>0,c>0,6,当且仅当a=b=c=1时,等号成立,故三者不能都小于2,即至少有一个不小于2.5.m0,显然成立.6.证明由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac得a2+b2+c2≥ab+bc+ca.由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca7.证明由已知>1及a>0可知01,只需证1+a-b-ab>1,只需证a-b-ab>0,即>1,即>1,这是已知条件,所以原不等式得证.8.A由f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,可知f(x)是R上的单调递减函数.由x1+x2>0,可知x1>-x2,即f(x1)22(a+b)>a+b+2a+b>,即x-1).∵h'(x)=-x2+x-1=,∴h(x)在(-1,0)内为增函数,在(0,+∞)内为减函数.∴h(x)max=h(0)=0,即h(x)≤h(0)=0,即f(x)≤g(x).12.证明要证f,即证-2,因此只要证-(x1+x2)-(x1+x2),即证,因此只要证,由于x1,x2∈R时,>0,>0,因此由基本不等式知显然成立,故原结论成立.13.(1)解设等差数列{an}的公差为d.因为所以解得(q=-4舍去).故an=3+3(n-1)=3n,bn=3n-1.(2)证明因为Sn=,所以所以+…+因为n≥1,所以0<,所以1-<1,所以所以+…+

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(福建专用)高考数学一轮复习 课时规范练35 直接证明与间接证明 理 新人教A-新人教A高三数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部