电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(福建专用)高考数学总复习 第八章 立体几何 课时规范练39 空间点、直线、平面之间的位置关系 理 新人教A-新人教A高三数学试题VIP免费

(福建专用)高考数学总复习 第八章 立体几何 课时规范练39 空间点、直线、平面之间的位置关系 理 新人教A-新人教A高三数学试题_第1页
1/4
(福建专用)高考数学总复习 第八章 立体几何 课时规范练39 空间点、直线、平面之间的位置关系 理 新人教A-新人教A高三数学试题_第2页
2/4
(福建专用)高考数学总复习 第八章 立体几何 课时规范练39 空间点、直线、平面之间的位置关系 理 新人教A-新人教A高三数学试题_第3页
3/4
课时规范练39空间点、直线、平面之间的位置关系一、基础巩固组1.若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分又非必要条件2.(2017河南南阳一模)设直线m,n是两条不同的直线,α,β是两个不同的平面,下列事件是必然事件的是()A.若m∥α,n∥β,m⊥n,则α⊥βB.若m∥α,n⊥β,m∥n,则α∥βC.若m⊥α,n∥β,m⊥n,则α∥βD.若m⊥α,n⊥β,m∥n,则α∥β3.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题正确的是()A.若m∥α,n∥α,则m∥nB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n4.(2017河南濮阳一模)已知m,n是两条不同的直线,α,β是两个不重合的平面.命题p:若α∩β=m,m⊥n,则n⊥α;命题q:若m∥α,m⊂β,α∩β=n,则m∥n.那么下列命题中的真命题是()A.p∧qB.p∨(􀱑q)C.(􀱑p)∧qD.(􀱑p)∧(􀱑q)5.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面6.设l是直线,α,β是两个不同的平面,()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β导学号〚21500558〛7.(2017江西宜春二模,理15)在三棱锥P-ABC中,PA,PB,PC两两互相垂直,且AB=4,AC=5,则BC的取值范围是.8.如图,在三棱锥A-BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.二、综合提升组9.下列命题错误的是()A.若平面α外的直线a不平行于平面α,则平面α内不存在与a平行的直线B.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么直线l⊥平面γC.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βD.一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交10.(2017福建厦门二模,理11)过正方体ABCD-A1B1C1D1的顶点A作平面α,使得正方体的各棱与平面α所成的角均相等,则满足条件的平面α的个数是()A.1B.4C.6D.8导学号〚21500559〛11.平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为()A.B.C.D.12.α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)三、创新应用组13.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为()A.B.C.D.14.(2017全国Ⅲ,理16)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是.(填写所有正确结论的编号)导学号〚21500560〛课时规范练39空间点、直线、平面之间的位置关系1.A“两条直线为异面直线”“两条直线无公共点”⇒.“两直线无公共点”“两直线异面或⇒平行”.故选A.2.D若m∥α,n∥β,m⊥n,则α,β位置关系不确定,故不正确;若m∥α,则α中存在直线c与m平行,m∥n,n⊥β,则c⊥β, c⊂α,∴α⊥β,不正确;若m⊥α,n∥β,m⊥n,则α,β可以相交,不正确;若m⊥α,m∥n,则n⊥α,n⊥β,∴α∥β,正确,故选D.3.Dm,n平行于同一个平面,m,n可能相交、平行、异面,故A错误;α,β垂直于同一个平面γ,α,β可能相交,可能平行,故B错误;α,β平行于同一条直线m,故α,β可能相交,可能平行,故C错误;垂直于同一个平面的两条直线平行,故D正确.4.C垂直平面内的一条直线,不能确定直线与平面垂直,所以命题p是假命题;命题q满足直线与平面平行的性质定理,所以命题q是真命题,所以􀱑p是真命题,可得(􀱑p)∧q是真命题.5.A连接A1C1,AC,则A1C1∥AC,所以A1,C1,A,C四点共面.所以A1C⊂平面ACC1A1.因为M∈A1C,所以M∈平面ACC1A1.又M∈平面AB1D1,所以M在平...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(福建专用)高考数学总复习 第八章 立体几何 课时规范练39 空间点、直线、平面之间的位置关系 理 新人教A-新人教A高三数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部