课时规范练43空间几何中的向量方法一、基础巩固组1.若平面α,β的法向量分别为n1=(2,-3,5),n2=(-3,1,-4),则()A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不正确2.已知平面α的一个法向量为n=(1,-,0),则y轴与平面α所成的角的大小为()A.B.C.D.3.两平行平面α,β分别经过坐标原点O和点A(2,1,1),且两平面的一个法向量n=(-1,0,1),则两平面间的距离是()A.B.C.D.34.已知向量m,n分别是直线l和平面α的方向向量和法向量,若cos=-,则l与α所成的角为()A.30°B.60°C.120°D.150°5.如图,过正方形ABCD的顶点A,作PA⊥平面ABCD.若PA=BA,则平面ABP和平面CDP所成的二面角的大小是()A.30°B.45°C.60°D.90°6.(2017广东珠海质检)设正方体ABCD-A1B1C1D1的棱长是2,则点D1到平面A1BD的距离是()A.B.C.D.7.如图,在正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角为.导学号〚21500564〛8.如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.(1)证明:AP⊥BC;(2)若点M是线段AP上一点,且AM=3.试证明平面AMC⊥平面BMC.9.在直三棱柱ABC-A1B1C1中,AA1=AB=BC=3,AC=2,D是AC的中点.(1)求证:B1C∥平面A1BD;(2)求点B1到平面A1BD的距离.导学号〚21500565〛二、综合提升组10.在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D,E,F分别是棱AB,BC,CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为()A.B.C.D.11.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=,侧棱AA1=1,侧面AA1B1B的两条对角线交于点D,则平面B1BD与平面CBD所成的二面角的余弦值为()A.-B.-C.D.12.(2017广东广州模拟)在长方体ABCD-A1B1C1D1中,AB=2,BC=AA1=1.则D1C1与平面A1BC1所成角的正弦值为.13.(2017山东青岛模拟,理17)如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=AB,B1C1BC,二面角A1-AB-C是直二面角.求证:(1)A1B1⊥平面AA1C;(2)AB1∥平面A1C1C.14.如图所示,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.三、创新应用组15.(2017宁夏中卫二模,理18)如图,已知菱形ABCD与直角梯形ABEF所在的平面互相垂直,其中BE∥AF,AB⊥AF,AB=BE=AF=2,∠CBA=.(1)求证:AF⊥BC;(2)线段AB上是否存在一点G,使得直线FG与平面DEF所成的角的正弦值为,若存在,求AG的长;若不存在,说明理由.导学号〚21500566〛16.(2017山西吕梁二模,理18)在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,其中AD∥BC,AB⊥AD,AB=AD=BC,BE=BC.(1)求证:DE⊥平面PAC;(2)若直线PE与平面PAC所成角的正弦值为,求二面角A-PC-D的平面角的余弦值.导学号〚21500567〛课时规范练43空间几何中的向量方法1.C因为cos=0且cos≠±1,所以α,β相交但不垂直.2.B可知y轴的方向向量为m=(0,1,0),设y轴与平面α所成的角为θ,则sinθ=|cos|. cos==-,∴sinθ=,∴θ=3.B两平面的一个单位法向量n0=,故两平面间的距离d=|n0|=4.A因为cos=-,所以l与α所成角θ满足sinθ=|cos|=,又,所以θ=30°.5.B(方法一)建立如图1所示的空间直角坐标系,不难求出平面APB与平面PCD的法向量分别为n1=(0,1,0),n2=(0,1,1),故平面ABP与平面CDP所成二面角的余弦值为,故所求的二面角的大小是45°.(方法二)将其补成正方体.如图2,不难发现平面ABP和平面CDP所成的二面角就是平面ABQP和平面CDPQ所成的二面角,其大小为45°.6.D建立如图所示的空间直角坐标系,则D1(0,0,2),A1(2,0,2),D(0,0,0),B(2,2,0),=(2,0,0),=(2,0,2),=(2,2,0).设平面A1BD的法向量为n=(x,y,z),则令x=1,则n=(1,-1,-1),∴点D1到平面A1BD的距离是d=7.30°如图所示,以O为原点建立空间直角坐标系.设OD=SO=OA=OB=OC=a,则A(a,0,0),B(0,a,0),C(-a,0,0),P则=(2a,0,0),=(a,a,0).设平面PAC的法向量为n,可求得n=(0,1,1),则cos<,n>=∴<,n>=60°,∴直线BC与平面PAC所成角为90°-60°=30°.8.证明(1)如图所示,以O为坐标原点,以射线OP为z轴的正半轴建立空间直角坐标系.则O(0,0,0),A(0,-3,0),B(4,2,0)...