课时规范练15导数与函数的小综合一、基础巩固组1.函数f(x)=(x-3)ex的单调递增区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)2.(2017山东烟台一模)已知函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b>0,c>0,d<0B.a>0,b>0,c<0,d<0C.a<0,b<0,c>0,d>0D.a>0,b>0,c>0,d>03.已知函数f(x)=x3-3x2+x的极大值点为m,极小值点为n,则m+n=()A.0B.2C.-4D.-24.已知f(x)是定义在R上的偶函数,其导函数为f'(x),若f'(x)0时,xf'(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是.11.(2017山东泰安一模)已知函数f(x)是定义在R上的奇函数,若g(x)=f(x+1)+5,g'(x)为g(x)的导函数,对∀x∈R,总有g'(x)>2x,则g(x)0,且对∀x∈(0,+∞),2f(x)0,则不等式xf(x+1)>f(2)的解集为.三、创新应用组15.(2017安徽淮南一模)如果定义在R上的函数f(x)满足:对于任意x1≠x2,都有x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1),则称f(x)为“H函数”.给出下列函数:①y=-x3+x+1;②y=3x-2(sinx-cosx);③y=1-ex;④f(x)=其中“H函数”的个数为()A.3B.2C.1D.0导学号〚21500524〛16.(2017安徽合肥一模)已知函数f(x)=-x3+3x2-ax-2a,若存在唯一的正整数x0,使得f(x0)>0,则a的取值范围是.课时规范练15导数与函数的小综合1.D函数f(x)=(x-3)ex的导数为f'(x)=[(x-3)ex]'=ex+(x-3)ex=(x-2)ex.由导数与函数单调性的关系,得当f'(x)>0时,函数f(x)单调递增,此时由不等式f'(x)=(x-2)ex>0,解得x>2.2.C由题图可知f(0)=d>0,排除选项A,B;f'(x)=3ax2+2bx+c,且由题图知(-∞,x1),(x2,+∞)是函数的递减区间,可知a<0,排除D.故选C.3.B因为函数f(x)=x3-3x2+x的极大值点为m,极小值点为n,所以m,n为f'(x)=3x2-6x+1=0的两根.由根与系数的关系可知m+n=-=2.4.A 函数f(x)是偶函数,∴f(x+1)=f(3-x)=f(x-3),∴f(x+4)=f(x),即函数f(x)是周期为4的周期函数. f(2019)=f(-1)=f(1),∴f(1)=2.设g(x)=,则g'(x)=<0,故函数g(x)是R上的减函数. 不等式f(x)<2ex-1等价于,即g(x)1,即不等式f(x)<2ex-1的解集为(1,+∞),故选A.5.B函数f(x)=的定义域为x≠0,x∈R,当x>0时,函数f'(x)=,可得函数的极值点为x=1,当x∈(0,1)时,函数是减函数,当x>1时,函数是增函数,并且f(x)>0,选项B,D满足题意.当x<0时,函数f(x)=<0,选项D不正确,选项B正确.6.B xf'(x)+2f(x)=,∴x2f'(x)+2xf(x)=,令g(x)=x2f(x),则g'(x)=2xf(x)+x2f'(x)=>0,∴函数g(x)在(0,+∞)内单调递增.∴g(2)=4f(2)