利用三角形全等测距离【教学目标】课标要求:1、知识与技能:能利用三角形的全等解决实际问题。2、过程与方法:通过让学生体会教科书中提供的情境,明白战士的具体做法,并尝试思考其中的道理,体会数学与实际生活的联系。3、情感与态度:通过生动、有趣、现实的例子激发学生的兴趣,引发他们去思考,并能在利用三角形全等解决实际问题的过程中进行有条理的思考和表达。目标达成:1.能利用三角形的全等解决实际问题。2.体会数学与实际生活的联系教学流程:【课前展示】必答①全等三角形的性质及判定条件抢答②在下列各图中,以最快的速度画出一个三角形,使它与△ABC全等,比比看谁快!(以小组为单位抢答或个人抢答或根据不同情况而定)题如下:板答BACBACACB如图,已知,∠C=∠E,∠1=∠2,AB=AD,△ABC和△ADE全等吗?为什么?【创境激趣】活动内容:引入一位经历过战争的老人讲述的一个故事,(图片显示);在一次战役中,为了炸毁与我军阵地隔河相望的敌军碉堡,需要测出我军阵地到敌军碉堡的距离。由于没有任何测量工具,我军战士为此绞尽脑汁,这时一位聪明的战士想出了一个办法,为成功炸毁碉堡立了一功。配合简图如下:教师提出问题:你知道聪明的战士用的是什么方法吗?能解释其中的原理吗?教师可做如下安排:ABCDE12①先让学生体会这个情境,明白战士的具体做法,对战士的测量有直观的理解;如:找出教室中与你距离相等的两个点,小组成员合作通过测量来验证战士的做法的合理性。条件允许的情况下,可以安排时间把学生拉到操场或野外选择一定目标亲自做一做。②在上述条件下,学生总结并解释战士采用的方法的数学道理。事实表明,学生们主动参与,积极思考,在操作过程中培养合作交流精神和严谨的学习态度。在鼓励学生的过程中,锻炼了他们的数学思考能力和语言表达能力,形成了良好的数学氛围。【自学导航】小明在上周末游览风景区时,看到了一个美的池塘,他想知道最远两点A、B之间的距离,但是他没有船,不能直接去测。手里只有一根绳子和一把尺子,他怎样才能测出A、B之间的距离呢?把你的设计方案在图上画出来,并与你的同伴交流你的方案,看看谁是方案更便捷。【合作探究】方法1:ABC≌DEC(SAS)AB=DE先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE的长度就是A,B间的距离。ABCCDE方案一方法2:AB方法3:【展示提升】典例分析知识迁移①要计算一个圆柱形容器的容积,需要测量其内径,由于瓶颈较小,无法直接测量,你能想出一种测量方案吗?②在一座楼相邻两面墙的外部有两点A,C,如图所示,请设计方案测量A,C两点间的距离。展示各组方案,小组成员代表讲述画法和原理,全班选定最佳方案,教师作出鼓励性评价。活动目的:让学生懂得情境中使用的方法虽然是一种估测,不是准确值,但却是解决问题的好方法,鼓励学生通过积极探索、讨论找出解决方案,通过合作从不同的角度得出不同的测量方法。使学生理解透彻明白。实际教学效果:学生讨论出的三种方法,初步感受到成功的喜悦.【强化训练】1.如图要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长就是AB的长。判定△EDC≌△ABC的理由是()A、SSSB、ASAC、AASD、SAS2.如图所示小明设计了一种测工件内径AB的卡钳,问:在卡钳的设计中,AO、BO、CO、DO应满足下列的哪个条件?()A、AO=COB、BO=DOC、AC=BDD、AO=CO且BO=DO3。如图是挂在墙上的一面大镜子,上面有两点A、B。小明想知道A、B两点之间的距离,但镜子挂得太高,无法直接测量。小明做了如下操作:在他够的着的圆上找到一点C,接下去小明却忘了应该怎么做?你能帮助他完成吗?BA●●DCEFODCBA3.如图是挂在墙上的面大镜子,上面有两点A、B。小明想知道A、B两点之间的距离,但镜子挂得太高,无法直接测量。小明做了如下操作:在他够的着的圆上找到一点C,接下去小明却忘了应该怎么做?你能帮助他完成吗?A··BEDC●活动目的:对本节课的知识进一步的理解、巩固、提高。实际教学效果:学生基本掌握了利用...