2.2.1探索直线平行的条件年级七年级学科数学主题相交线主备教师课型新授课课时1时间教学目标1.理解并掌握同位角的概念,能够判定同位角并确定其个数;2.能够运用同位角相等判定两直线平行;3.理解并掌握平行公理及其推论,能够运用其解决实际问题.教学重、难点重点:能够运用同位角相等判定两直线平行;难点:能够运用同位角相等判定两直线平行;导学方法启发式教学、小组合作学习导学步骤导学行为(师生活动)设计意图回顾旧知,引出新课数学来源于生活,生活中处处有数学,观察下面的图片,你发现了什么?以上的图片中都有直线平行,这将是我们这节课学习的内容.从学生已有的知识入手,引入课题合作探究探究点一:同位角引出研究本节课要学习知识新知探索【类型一】判断同位角下列图形中,∠1和∠2不是同位角的是()解析:选项A、B、D中,∠1与∠2在截线的同侧,并且在被截线的同一方向,是同位角,即在图中可找到形如“F”的模型;选项C中,∠1与∠2没有公共直线,不是同位角.故选C.方法总结:判断两个角是否是同位角的有效方法——描图法:①把两个角在图中“描画”出来;②找到两个角的公共直线;③观察所描的角,判断所属“字母”类型是否为“F”型.【类型二】数同位角的个数如图,直线l1,l2被l3所截,则同位角共有()A.1对B.2对C.3对D.4对解析:图中同位角有:∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8共4对.故选D.方法总结:数同位角的个数时,应从各个方向逐一观察,避免重复或漏数.探究点二:利用同位角判定两直线平行如图,直线AB、CD分别与EF相交于点G、H,已的必要性,清楚新知识的引出是由于实际生活的需要学生积极参与学习活动,为学生动脑思考提供机会,发挥学生的想象力和创造性体现教师的主导作用学以致用,举一反三教师给出准确概念,同时给学生消化、吸例题精讲知∠1=70°,∠2=70°,试说明:AB∥CD.解析:要说明AB∥CD,可转化为说明∠1与其同位角相等,这由∠2的对顶角容易证出.解:因为∠2=∠EHD(对顶角相等),又因为∠2=70°,所以∠EHD=70°.因为∠1=70°,所以∠EHD=∠1,所以AB∥CD(同位角相等,两直线平行).方法总结:本题考查的是平行线的判定,熟知“同位角相等,两直线平行”是解答此题的关键.探究点三:平行公理及其推论【类型一】应用平行公理及其推论进行判断有下列四种说法:(1)过直线外一点有且只有一条直线与这条直线平行;(2)同一平面内,过一点能且只能作一条直线与已知直线垂直;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短;(4)平行于同一条直线的两条直线平行.其中正确的个数是()A.1个B.2个C.3个D.4个解析:根据平行公理、垂线的性质进行判断.(1)过直线外一点有且只有一条直线与这条直线平行,正确;(2)同一平面内,过一点能且只能作一条直线与已知直线垂直,正确;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;(4)平行于同一条直线的两条直线平行,正确.正确的有4个.故答案为D.方法总结:平行线公理和垂线的性质两者比较相近,特别注意,对于平行公理中,必须是过直线外一点可以作收时间,当堂掌握例2由学生口答,教师板书,已知直线的平行线,过直线上一点不能做已知直线的平行线.但垂线的性质中,无论点在平面内何处都能作出已知直线的唯一垂线.【类型二】应用平行公理进行推论论证四条直线a,b,c,d互不重合,如果a∥b,b∥c,c∥d,那么直线a,d的位置关系为________.解析:由于a∥b,b∥c,根据平行公理的推论得到a∥c,而c∥d,所以a∥d.故答案为a∥d.方法总结:平行公理的推论是证明两条直线相互平行的理论依据.【类型三】平行公理推论的实际应用将一张长方形的硬纸片ABCD对折后打开,折痕为EF,把长方形ABEF平摊在桌面上,另一面CDFE无论怎样改变位置,总有CD∥AB存在,为什么?解析:根据平行公理的推论得出答案即可.解: CD∥EF,EF∥AB,∴CD∥AB.方法总结:利用平行公理的推论进行证明时,关键是找到与要证两条直线都平行的第三条直线进行说明.课堂检测1.如图,过点M作直线AB的平行线,下列说法正确的是【】A.不能作B.只能作检验学生学习效果,学...