全等三角形教学目标(1)知道什么是全等形、全等三角形及全等三角形的对应元素;(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能熟练找出两个全等三角形的对应角、对应边.重点全等三角形的性质.难点用三角形找全等三角形的对应边、对应角教学过程(包括课程导入、新课解析、例题精讲、课堂练习、作业设计等)Ⅰ.巧设现实情景,引入新课[师]前面我们研究了全等图形及其应用.现在来观察下面这两个图形1.观察图中花边图案,它可以看成是由哪个图形经过怎样的变换产生的?2.另一个图呢?[生甲]图中花边图案可以看成是由经过平移得到的.这五个是全等的.[生乙]另一个图可以看作是由一个三角形绕着中心点旋转得到的,这四个三角形是全等的.[师]很好,这两个图案都是由全等图形拼成的.(电脑演示形成过程)图案是由四个全等三角形组成的.而三角形是特殊的图形.所以这节课我们来研究全等三角形.Ⅱ.讲授新课[师]全等三角形是全等图形的一种,哪位同学来概括:什么是全等三角形?[生]能够完全重合的两个三角形,就是全等三角形.[师]很好,看图:△ABC与△DEF重合(电脑演示重合过程),这时,点A与点D重合.点B与点E重合.我们把这样互相重合的一对点就叫做对应顶点;AB边与DE边重合,这样互相重合的边就叫做对应边;∠A与∠D重合,它们就是对应角.你能找出其他的对应点、对应边和对应角吗?[生甲]点C与点F是对应点,BC边与EF边是对应边,CA边与FD边也是对应边.∠B与∠E是对应角,∠C与∠F也是对应角.[师]很好,接下来我们分组来做一做用两块全等的三角板重合放在桌面上,让其中一块绕一个顶点旋转,共有几种不同的位置关系,画出图形并说出对应元素.[生乙]一块三角板绕一个顶点旋转,有以下四种位置关系.如图.不论哪种图形,点A与点A是对应顶点,点B与点E是对应顶点,点C与点D是对应顶点;AB边与AE边是对应边,AC边与AD边、DE边与CB边也是对应边;∠BAC与∠DAE是对应角,∠B与∠E,∠C与∠ADE是对应角.[生丙]还有其他的位置关系,但对应元素是一样的.[师]对,不论两个三角尺中的其中一个绕一个顶点如何旋转,两个三角尺的位置关系虽有变化,但对应元素不变.下面我们来观察、归纳并总结规律.(1)AD的对应边是___________,∠E的对应角是___________.(2)DE的对应边是___________,∠DAE的对应角是___________.(3)FE的对应边是___________,∠D的对应角是___________.(4)AD的对应边是_________,CD的对应边是_________,∠D的对应角是___________.由(1)~(3)你发现什么规律?由(4)呢?[生甲](1)AD的对应边是AB.∠E的对应角是∠C.(2)DE的对应边是BC.∠DAE的对应角是∠CAB.(3)FE的对应边是AC.∠D的对应角是∠B.由以上可知:全等三角形对应边所对的角是对应角.[生乙](4)AD的对应边是BC.CD的对应边是AB.∠D的对应角是∠B.由上可知:全等三角形的两条对应边所夹的角是对应角.[师]同学们总结得很好.由于两个三角形的位置关系不同,还可以根据具体情况而选择.如:有公共边的,公共边一定是对应边;有公共角的,公共角一定是对应角等等.平行、垂直都有符号表示,那么全等用什么符号来表示呢?如图,△ABC与△XYZ全等,我们把它记作:“△ABC≌△XYZ”.读作“△ABC全等于△XYZ”.即这两个三角形能够完全重合.记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.如图:点A与点D、点B与点E、点C与点F是对应顶点,记作:△ABC≌△DEF.另外,我们还可以用一些记号来标注对应角、边,这样可以帮助我们分析图形.如图5-87很明显知道:∠C与∠F是对应角,AB与DE是对应边.大家现在仔细观察两个全等三角形的变换过程.(电脑演示下面的过程)在这个变换过程中,哪些是不变的量,哪些是变化的量?[生甲]在这个变换的过程中,两个三角形的边、角没有发生变化,只是它们的位置关系有所变化.[生乙]变化两个全等三角形的位置关系,而不变它们的边和角,这说明两个全等三角形的对应边、对应角相等.[师]很好,由此我们得到了全等三角形的性质:全等三角形的对应边,对应角相等.图5-89△ABC≌△FDE.则∠A=∠F,∠B=∠D,∠C=...