22.2.3因式分解法—解一元二次方程教案教学目标知识与技能:掌握用因式分解法解一元二次方程,会运用因式分解法解方程.过程与方法:通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法──因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.情感态度与价值观:通过探索因式分解与一元二次方程的联系,让学生体会探究问题的乐趣,培养学生热爱思索的科学精神.教学重点:用因式分解法解一元二次方程教学难点:运用因式分解法解一元二次方程的过程教学时数:2课时教学过程:第一课时一、课前预习:自学教材P43——44,初步认识因式分解法解一元二次方程的方法.二、复习引入(学生活动)解下列方程.(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为,的一半应为,因此,应加上()2,同时减去()2.(2)直接用公式求解.三、探索新知上面两个方程都可以写成:(1)x(2x+1)=0(2)3x(x+2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-.(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1.解方程(1)10x-4.9x2=0(2)x(x-2)+x-2=0(3)5x2-2x-=x2-2x+(4)(x-1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略(方程一边为0,另一边可分解为两个一次因式乘积。)练习:1.下面一元二次方程解法中,正确的是().A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x两边同除以x,得x=1四、巩固练习教材P45练习1、2.例2.已知9a2-4b2=0,求代数式的值.分析:要求的值,首先要对它进行化简,然后从已知条件入手,求出a与b的关系后代入,但也可以直接代入,因计算量比较大,比较容易发生错误.解:原式=∵9a2-4b2=0∴(3a+2b)(3a-2b)=03a+2b=0或3a-2b=0,a=-b或a=b当a=-b时,原式=-=3当a=b时,原式=-3.五、应用拓展例3.我们知道x2-(a+b)x+ab=(x-a)(x-b),那么x2-(a+b)x+ab=0就可转化为(x-a)(x-b)=0,请你用上面的方法解下列方程.(1)x2-3x-4=0(2)x2-7x+6=0(3)x2+4x-5=0分析:二次三项式x2-(a+b)x+ab的最大特点是x2项是由x·x而成,常数项ab是由-a·(-b)而成的,而一次项是由-a·x+(-b·x)交叉相乘而成的.根据上面的分析,我们可以对上面的三题分解因式.解(1)∵x2-3x-4=(x-4)(x+1)∴(x-4)(x+1)=0∴x-4=0或x+1=0∴x1=4,x2=-1六、归纳小结本节课要掌握:因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.七、布置作业:《经典课堂》八、教学反思第一课时作业设计一、选择题1.下面一元二次方程解法中,正确的是().A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x两边同除以x,得x=12.下列命题①方程kx2-x-2=0是一元二次方程;②x=1与方程x2=1是同解方程;③方程x2=x与方程x=1是同解方程;④由(x+1)(x-1)=3可得x+1=3或x-1=3,其中正确的命题有().A.0个B.1个C.2个D.3个3.如果不为零的n是关于x的方程x2-mx+n=0的根,那么m-n的值为().A.-B.-1C.D.1二、填空题1.x2-5x因式分解结果为_______;2x(x-3)-5(x-3)因式分解的结果是______.2.方程(2x-1)2=2x-1的根是________.3.二次三项式x2+20x+96分解因式的结果为________;如果令x2+20x+96=0,那么它的两个根是_________.三、综合提高题1.用因式分解法解下列方程.(1)3y2-6y=0(2)25y2-16=0(3)x2-12x-28=0(4)x2-12x+35=02.已知(x+y)(x+y-1)=0,求x+y的值.3.今年初,湖北武穴市发生禽流感,某养鸡专业户在禽流感后,打算改建养鸡场,建一个面积为150m2的长方形养鸡场.为了节约材料,鸡场的一边靠着原有的一条墙,墙长am,另三边用竹篱围成,如果篱笆的长为35m,问鸡场长与宽各为多少?(其中a≥20m)