第5讲:一元一次方程及其应用一、复习目标1、准确地理解方程、方程的解、解方程和一元一次方程等概念。2、熟练地掌握一元一次方程的解法。3、能以一元一次方程为工具解决一些简单的实际问题。二、课时安排1课时三、复习重难点1、根据具体问题中的数量关系列出一元一次方程并求解。2、寻找等量关系,直接、间接设元。四、教学过程(一)知识梳理一元一次方程解的概念1、什么是方程?方程和等式的区别是什么?2.什么是一元一次方程?它的标准形式和最简形式是什么?一元一次方程是只指含有未知数,且未知数的最高次数是的方程。它的标准形式是:它的最简形式是:3.什么是方程的解,什么是解方程?解一元一次方程的一般步骤有哪些?它的根据是什么?1、:不要漏乘分母为1的项。2、:注意符号3、:①将含有未知数的项移到等式的一边;将常数项移到另一边;②注意“变号”4、(乘法分配律的逆用)5、:除以一个数等于乘以这个数的倒数。等式的性质等式有哪些性质,并以字母形式表示出来等式性质1:如果a=b,那么:a+c=等式性质2:如果a=b,那么:ac=,a/c=(c≠0)(二)题型、方法归纳考点一、考查一元一次方程解的概念技巧归纳:1、主要是在考查方程的解的定义的基础上求方程中参数的值2、未知数的系数化为1,就是在方程两边同时除以未知数的系数或同时乘未知数的系数的倒数.考点二含字母系数的一元一次方程技巧归纳:含字母系数的一元一次方程总能转化为“ax=b”的形式,对于方程中字母系数a、b的值没有明确给出时,则要对a、b的取值的可能情况进行讨论,再讨论方程的解的情况,其方法为:①当a≠0时,方程有唯一解,即x=当a=0,b=0时,方程的解为无数个;当a=0,b≠0时,方程无解.考点三、求增长率问题技巧归纳:在解这一类题目时关键要找好“单位1”考点四、打折销售问题技巧归纳:列方程解应用题关键在于审题,抓住关键词,找出已知量、未知量以及它们之间的相等关系,然后设未知数,列方程,解答.考点五、利用一元一次方程技巧归纳:列方程解应用题关键在于审题,抓住关键词,找出已知量、未知量以及它们之间的相等关系,然后设未知数,列方程,解答.(三)典例精讲例1已知关于x的方程4x-3m=2的解是x=m,则m的值是解析:由题意知道方程的解是x=m,根据方程的解的定义,把代入方程得:,所以.例2.已知关于x的方程2x+a-9=0的解是x=2,则a的值为(D)A.2B.3C.4D.5例3、若x=2是关于x的方程2x+3m-1=0的解,则m的值为______-1_____.例4解关于x的方程:2a(a-4)x+4(a+1)x-2a=a2+4x原方程整理得:a(2a-4)x=a(a+2)①当a≠0,a≠2时方程有唯一解,x②当a=0时,方程有无数个解;③当a=2时,方程无解.含字母系数的一元一次方程总能转化为“ax=b”的形式,对于方程中字母系数a、b的值没有明确给出时,则要对a、b的取值的可能情况进行讨论,再讨论方程的解的情况,其方法为:①当a≠0时,方程有唯一解,即x=;当a=0,b=0时,方程的解为无数个;当a=0,b≠0时,方程无解.例52009年全国教育计划支出1980亿元,比2008年增加380亿元,则2009年全国教育经费增长率为。解析:由题目条件知道2008年我国教育支出为1980-380=1600(亿元),所以可设2009年全国教育经费增长率为x%,则有:1600(1+x%)=1980。解得:x=23.75%,所以2009年全国教育经费增长率为23.75%.点评:本题是一道和时事相结合的题目,主要考查了增长率问题的求法,在解这一类题目时关键要找好“单位1”。例6某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售()A.80元B.100元C.120元D.160元解析:在解本题时要先求出商品的标价,所以设商品的标价为x元,根据题意得:,解得:x=200,又因为要以不低于进价20%价格才能出售所以最低价为200(1+20%)=240(元)。360-240=120(元)想买下标价为360元的这种商品,最多降价120元商店老板才能出售,答案选C.点评:打折销售问题一直是种考中的热点问题,充分考查了同学们的分析问题和解决问题的能力.例7、儿子今年13岁,父亲今...