课题11.1全等三角形的性质运用练习课授课时间年月日教学目标知识与能力1、理解掌握全等三角形的性质。2、能够准确辩认全等三角形的对应元素。过程与方法通过复习与练习是学生进一步理解全等三角形的性质情感态度价值观培养独立做题的习惯和取得成功的乐趣教学重点找全等三角形的对应边、对应角.教学难点找全等三角形的对应边、对应角.教学方法讲练结合教具准备课型新授教学活动教学环节补充一、复习找对应边和对应角的常用方法有:(1)有公共边的,公共边是对应边.(2)有公共角的,公共角是对应角.(3)有对顶角的,对顶角是对应角一对最长的边是对应边,一对最短的边是对应边.(4)一对最大的角是对应角,一对最小的角是对应角(5)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.(6)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角二、例题与练习:已知:△DEF≌△MNP,且EF=NP,∠F=∠P,∠D=48°,∠E=52°,MN=12cm,求:∠P的度数及DE的长.四、小结:通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.(一)从运动角度看1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.3.平移法:沿某一方向推移使两三角形重合来找对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.3.有公共边的,公共边是对应边.4.有公共角的,公共角是对应角.5.有对顶角的,对顶角是对应角一对最长的边是对应边,一对最短的边是对应边.一对最大的角是对应角,一对最小的角是对应角五、检测1、如图,△ABC≌△ADE,则,AB=,∠E=∠,若∠BAE=120°,∠BAD=40°,则∠BAC=2.△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=.3、△ABC≌△BAD,A和B,C和D是对应顶点,如果AB=8cm,BD=6cm,AD=5cm,则BC=________cm.4、如图2,△ABE≌△ACD,AB=AC,BE=CD,∠B=500,∠AEC=1200,则∠DAC的度数等于.5、如图3,若△ABC≌△DEF,则∠E=°6.如图4,△ABD≌△ACE,对应角是____________,对应边是______________.7、.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C8、如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC板书设计:找对应元素的方法运动法:翻折、旋转、平移.位置法:对应角→对应边,对应边→对应角教后记:图3