课时跟踪检测(十七)[高考基础题型得分练]1.设f(x)=a(x-5)2+6lnx(x>0),其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.解:(1)因为f(x)=a(x-5)2+6lnx(x>0),故f′(x)=2a(x-5)+.令x=1,得f(1)=16a,f′(1)=6-8a,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1),由点(0,6)在切线上,可得6-16a=8a-6,解得a=.(2)由(1)知,f(x)=(x-5)2+6lnx(x>0),f′(x)=x-5+=.令f′(x)=0,解得x1=2,x2=3.当03时,f′(x)>0,故f(x)的递增区间是(0,2),(3,+∞);当2<x<3时,f′(x)<0,故f(x)的递减区间是(2,3).由此可知f(x)在x=2处取得极大值f(2)=+6ln2,在x=3处取得极小值f(3)=2+6ln3.2.[2017·甘肃兰州模拟]已知函数f(x)=ex-ax(a∈R,e为自然对数的底数).(1)讨论函数f(x)的单调性;(2)若a=1,函数g(x)=(x-m)f(x)-ex+x2+x在(2,+∞)上为增函数,求实数m的取值范围.解:(1)函数f(x)的定义域为R,f′(x)=ex-a.当a≤0时,f′(x)>0,∴f(x)在R上为增函数;当a>0时,由f′(x)=0得x=lna,则当x∈(-∞,lna)时,f′(x)<0,∴函数f(x)在(-∞,lna)上为减函数;当x∈(lna,+∞)时,f′(x)>0,∴函数f(x)在(lna,+∞)上为增函数.(2)当a=1时,g(x)=(x-m)(ex-x)-ex+x2+x, g(x)在(2,+∞)上为增函数,∴g′(x)=xex-mex+m+1≥0在(2,+∞)上恒成立,即m≤在(2,+∞)上恒成立,令h(x)=,x∈(2,+∞),h′(x)==.令L(x)=ex-x-2,L′(x)=ex-1>0在(2,+∞)上恒成立,即L(x)=ex-x-2在(2,+∞)上为增函数,即L(x)>L(2)=e2-4>0,∴h′(x)>0,即h(x)=在(2,+∞)上为增函数,∴h(x)>h(2)=,∴m≤.∴实数m的取值范围是.3.已知f(x)=ax2-(a+2)x+lnx.(1)当a=1时,求y=f(x)在(1,f(1))处的切线方程;(2)当a>0时,若f(x)在区间[1,e]上最小值为-2,求实数a的取值范围.解:(1)当a=1时,f(x)=x2-3x+lnx,f′(x)=2x-3+.因为f′(1)=0,f(1)=-2,所以曲线y=f(x)在点(1,-2)处的切线方程是y=-2.(2)函数f(x)=ax2-(a+2)x+lnx的定义域是(0,+∞).当a>0时,f′(x)=2ax-(a+2)+=,令f′(x)===0,∴x=或x=.当0<≤1,即a≥1时,f(x)在[1,e]上单调递增,所以f(x)在[1,e]上的最小值是f(1)=-2;当1<<e时,f(x)在[1,e]上的最小值f<f(1)=-2,不合题意;当≥e时,f(x)在[1,e]上单调递减,此时f(x)在[1,e]上的最小值f(e)<f(1)=-2,不合题意.综上,实数a的取值范围为[1,+∞).4.已知函数f(x)=ex-ln(x+m).(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m≤2时,证明:f(x)>0.(1)解:f′(x)=ex-,由x=0是f(x)的极值点得f′(0)=0,所以m=1.于是f(x)=ex-ln(x+1),定义域为(-1,+∞),f′(x)=ex-.函数f′(x)=ex-在(-1,+∞)上单调递增,且f′(0)=0,因此当x∈(-1,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.所以f(x)在(-1,0)上单调递减,在(0,+∞)上单调递增.(2)证明:当m≤2,x∈(-m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时,f(x)>0.当m=2时,函数f′(x)=ex-在(-2,+∞)上单调递增.又f′(-1)<0,f′(0)>0,故f′(x)=0在(-2,+∞)上有唯一实根x0,且x0∈(-1,0).当x∈(-2,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.故当x=x0时,f(x)取得最小值.由f′(x0)=0得ex0=,ln(x0+2)=-x0,故f(x)≥f(x0)=+x0=>0.综上,当m≤2时,f(x)>0.[冲刺名校能力提升练]1.[2017·吉林省实验中学二模]已知函数f(x)=mx+lnx,其中m为常数,e为自然对数的底数.(1)当m=-1时,求f(x)的最大值;(2)若f(x)在区间(0,e]上的最大值为-3,求m的值.解:(1)当m=-1时,f(x)=-x+lnx,定义域为(0,+∞).求导得f′(x)=-1+,令f′(x)=0,得x=1.当x变化时,f′(x),f(x)的变化情况如下表.x(0,1)1(1,+∞)f′(x)+0-f(x)-1由表可知f(x)的最大值为f(1)=-1.(2)求导得f′(x)=m+.①当m≥0时,f′(x)>0恒成立,此时f...