数列通项公式的求法一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列是递增数列,前n项和为,且成等比数列,.求数列的通项公式.解:设数列公差为 成等比数列,∴,即 ,∴………………………………① ∴…………②由①②得:,∴】点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。二、公式法若已知数列的前n项和与的关系,求数列的通项可用公式求解。例2.已知数列的前项和满足.求数列的通项公式。解:由当2n时,有,)1(2)(211nnnnnnaaSSa1122(1),nnnaa,)1(22221nnnaa……,.2212aa11221122(1)2(1)2(1)nnnnnaa].)1(2[323])2(1[2)1(2)]2()2()2[()1(21211211nnnnnnnnn经验证也满足上式,所以点评:利用公式求解时,要注意对n分类讨论,但若能合写时一定要合并.三、由递推式求数列通项法对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。类型1递推公式为解法:把原递推公式转化为,利用累加法(逐差相加法)求解。例3.已知数列满足,,求。解:由条件知:分别令,代入上式得个等式累加之,即所以,类型2(1)递推公式为解法:把原递推公式转化为,利用累乘法(逐商相乘法)求解。例4.已知数列满足,,求。解:由条件知,分别令,代入上式得个等式累乘之,即又,注:由和确定的递推数列的通项还可以如下求得:所以,,,依次向前代入,得,类型3递推式:解法:只需构造数列,消去带来的差异.其中有多种不同形式①为常数,即递推公式为(其中p,q均为常数,)。解法:转化为:,其中,再利用换元法转化为等比数列求解。例5.已知数列中,,,求.解:设递推公式可以转化为即.故递推公式为,令,则,且.所以是以为首项,2为公比的等比数列,则,所以.②为一次多项式,即递推公式为例6.设数列:,求.解:设,将代入递推式,得…(1)则,又,故代入(1)得备注:本题也可由,()两式相减得转化为求之.③为的二次式,则可设;类型4递推公式为(其中p,q均为常数,)。(或,其中p,q,r均为常数)解法:该类型较类型3要复杂一些。一般地,要先在原递推公式两边同除以,得:引入辅助数列(其中),得:再应用类型3的方法解决。例7.已知数列中,,,求。解:在两边乘以得:令,则,应用例7解法得:所以类型5递推公式为(其中p,q均为常数)。解法:先把原递推公式转化为其中s,t满足,再应用前面类型3的方法求解。例8.已知数列中,,,,求。解:由可转化为即或这里不妨选用(当然也可选用,大家可以试一试),则是以首项为,公比为的等比数列,所以,应用类型1的方法,分别令,代入上式得个等式累加之,即又,所以。1.在数列中,,,求. ,当时,,,,将上面个式子相加得到:∴(),当时,符合上式故.2.设是首项为1的正项数列,且,求它的通项公式.由题意∴ ,∴,∴,∴,又,∴当时,,当时,符合上式【变式2】已知数列中,,,求通项公式.由得,∴,∴,∴当时,当时,符合上式∴3.数列中,,,求.对两边同除以得即可. ,∴两边同除以得,∴成等差数列,公差为d=5,首项,∴,∴.4.已知数列中,,,求.法一:设,解得即原式化为设,则数列为等比数列,且∴法二: ①②由①-②得:设,则数列为等比数列∴∴∴法三:,,,……,,∴【变式1】已知数列中,,求【答案】令,则,∴,即∴,∴为等比数列,且首项为,公比,∴,故.【变式2】已知数列满足,而且,求这个数列的通项公式.【答案】 ,∴设,则,即,∴数列是以为首项,3为公比的等比数列,∴,∴.∴.5.已知数列中,是它的前n项和,并且,.(1)设,求证:数列是等比数列;(2)设,求证:数列是等差数列;(3)求数列的通项公式及前n项和.解析:(1)因为,所以以上两式等号两边分别相减,得即,变形得因为,所以由此可知,数列是公比为2的等比数列.由,,所以,所以,所以.(2),所以将代入得由...