电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 选修部分 坐标系与参数方程 课时达标检测(六十二)参数方程 理-人教版高三选修数学试题VIP免费

高考数学一轮复习 选修部分 坐标系与参数方程 课时达标检测(六十二)参数方程 理-人教版高三选修数学试题_第1页
1/3
高考数学一轮复习 选修部分 坐标系与参数方程 课时达标检测(六十二)参数方程 理-人教版高三选修数学试题_第2页
2/3
高考数学一轮复习 选修部分 坐标系与参数方程 课时达标检测(六十二)参数方程 理-人教版高三选修数学试题_第3页
3/3
课时达标检测(六十二)参数方程1.(2018·河南息县第一高级中学段测)已知曲线C的参数方程是(α为参数),直线l的参数方程为(t为参数).(1)求曲线C与直线l的普通方程;(2)若直线l与曲线C相交于P,Q两点,且|PQ|=,求实数m的值.解:(1)由(α为参数)得曲线C的普通方程为x2+(y-m)2=1.由x=1+t,得t=x-1,代入y=4+t,得y=4+2(x-1),所以直线l的普通方程为2x-y+2=0.(2)圆心(0,m)到直线l的距离为d=,由勾股定理得2+2=1,解得m=3或m=1.2.在极坐标系中,已知三点O(0,0),A,B.(1)求经过点O,A,B的圆C1的极坐标方程;(2)以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,圆C2的参数方程为(θ是参数),若圆C1与圆C2外切,求实数a的值.解:(1)O(0,0),A,B对应的直角坐标分别为O(0,0),A(0,2),B(2,2),则过点O,A,B的圆的普通方程为x2+y2-2x-2y=0,将代入可求得经过点O,A,B的圆C1的极坐标方程为ρ=2cos.(2)圆C2:(θ是参数)对应的普通方程为(x+1)2+(y+1)2=a2,圆心为(-1,-1),半径为|a|,而圆C1的圆心为(1,1),半径为,所以当圆C1与圆C2外切时,有+|a|=,解得a=±.3.(2018·湖北宜昌模拟)在直角坐标系xOy中,直线l:y=x,圆C:(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求直线l与圆C的极坐标方程;(2)设直线l与圆C的交点为M,N,求△CMN的面积.解:(1)将C的参数方程化为普通方程为(x+1)2+(y+2)2=1,极坐标方程为ρ2+2ρcosθ+4ρsinθ+4=0.直线l:y=x的极坐标方程为θ=(ρ∈R).(2)圆心到直线的距离d==,∴|MN|=2=,∴△CMN的面积S=××=.4.(2018·豫南九校联考)在直角坐标系xOy中,设倾斜角为α的直线l:(t为参数)与曲线C:(θ为参数)相交于不同的两点A,B.(1)若α=,求线段AB的中点M的坐标;(2)若|PA|·|PB|=|OP|2,其中P(2,),求直线l的斜率.解:(1)将曲线C的参数方程化为普通方程是+y2=1.当α=时,设点M对应的参数为t0.直线l的方程为(t为参数),代入曲线C的普通方程+y2=1,得13t2+56t+48=0,设直线l上的点A,B对应参数分别为t1,t2.则t0==-,所以点M的坐标为.(2)将代入曲线C的普通方程+y2=1,得(cos2α+4sin2α)t2+(8sinα+4cosα)t+12=0,因为|PA|·|PB|=|t1t2|=,|OP|2=7,所以=7,得tan2α=.由于Δ=32cosα(2sinα-cosα)>0,故tanα=.所以直线l的斜率为.5.(2018·江西百校联盟模拟)在平面直角坐标系xOy中,C1:(t为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C2:ρ2+10ρcosθ-6ρsinθ+33=0.(1)求C1的普通方程及C2的直角坐标方程,并说明它们分别表示什么曲线;(2)若P,Q分别为C1,C2上的动点,且|PQ|的最小值为2,求k的值.解:(1)由可得其普通方程为y=k(x-1),它表示过定点(1,0),斜率为k的直线.由ρ2+10ρcosθ-6ρsinθ+33=0可得其直角坐标方程为x2+y2+10x-6y+33=0,整理得(x+5)2+(y-3)2=1,它表示圆心为(-5,3),半径为1的圆.(2)因为圆心(-5,3)到直线y=k(x-1)的距离d==,故|PQ|的最小值为-1,故-1=2,得3k2+4k=0,解得k=0或k=-.6.(2018·湖南岳阳模拟)已知曲线C的极坐标方程为ρ=6sinθ,以极点O为原点,极轴为x轴的非负半轴建立直角坐标系,直线l的参数方程为(t为参数).(1)求曲线C的直角坐标方程及直线l的普通方程;(2)直线l与曲线C交于B,D两点,当|BD|取到最小值时,求a的值.解:(1)曲线C的极坐标方程为ρ=6sinθ,即ρ2=6ρsinθ,化为直角坐标方程:x2+y2=6y,配方为:x2+(y-3)2=9,圆心C(0,3),半径r=3.直线l的参数方程为(t为参数),消去参数t可得:x-ay+a+1=0.(2)由直线l经过定点P(-1,1),此点在圆的内部,因此当CP⊥l时,|BD|取到最小值,则kCP·kl=×kl=-1,解得kl=-.∴=-,解得a=-2.7.(2018·河南六市联考)在平面直角坐标系中,曲线C1的参数方程为(φ为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.(1)求曲线C2的直角坐标方程;(2)已知点M是曲线C1上任意一点,点N是曲线C2上任意一点,求|MN|的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 选修部分 坐标系与参数方程 课时达标检测(六十二)参数方程 理-人教版高三选修数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部