江苏省普通高等学校2018年高三数学招生考试资源练习试题第一部分填空题练习一1.(2017·北京怀柔区期末)已知集合M={x|x≥-1},N={x|-2<x<2},则M∩N=__________.2.(2017·宝鸡一模)已知复数是纯虚数,则实数a=__________.3.(2017·包头十校联考)在某中学举行的环保知识竞赛中,将三个年级参赛的学生的成绩进行整理后分为5组,绘制出如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组.已知第二小组的频数是40,则成绩在80~100分的学生人数是________.4.(2017·永州二模)已知双曲线-y2=1的一个顶点坐标为(2,0),则此双曲线的渐近线方程为__________.5.(2016·四川卷)从2,3,8,9中任取两个不同的数,分别记为a,b,则logab为整数的概率为__________.6.(2017·张掖高台一中期末)阅读下面的程序框图,运行相应的程序.若输入x的值为1,则输出S的值为________.7.(2017·武汉武昌区调研)设公比为q(q>0)的等比数列{an}的前n项和为Sn.若S2=3a2+2,S4=3a4+2,则a1=________.8.(2017·上饶一模)如图,在正方体ABCDA1B1C1D1中,棱长为2,E,F分别是棱DD1,C1D1的中点,则三棱锥B1A1BE的体积为________.9.(2017·河北五个一联盟二模)函数f(x)=sinωx(ω>0)的图象向右平移个单位得到函数y=g(x)的图象,并且函数g(x)在区间[,]上单调递增,在区间[,]上单调递减,则实数ω的值为________.10.(2017·景德镇期末)在△ABC中,P为BC边上的一点,满足3AP=mAB+nAC,则+的最小值为________.11.(2017·吕梁二模)在△ABC中,|AC|=1,|CA-CB|=|CA+CB|,则AB·AC=________.12.(2016·山东卷)已知函数f(x)=其中m>0.若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则实数m的取值范围是____________.13.(2017·湖北四地七校期末联考)已知圆O:x2+y2=4,点P为直线x+2y-9=0上一动点,过点P向圆O引两条切线PA,PB,A,B为切点,则直线AB经过定点__________.14.(2017·安徽示范高中二模)曲线y=的一条切线l与y=x,y轴三条直线围成的三角形记为△OAB,则△OAB外接圆面积的最小值为________.练习二1.(2017·延安黄陵中学期末)已知集合A={1,4},B={y|y=log2x,x∈A},则A∪B=________.2.(2017·马鞍山一模)复数z=2i+(i是虚数单位)在复平面内对应的点在第________象限.3.(2017·六安皖西教学联盟)若抛物线y2=2px的准线经过双曲线x2-y2=2的右焦点,则p的值为________.4.(2016·天津卷)阅读下边的算法流程图,运行相应的程序,则输出S的值为________.5.(2017·孝义期末)给定四组数据:甲:1,2,3,4,5;乙:1,3,5,7,9;丙:1,2,3;丁:1,3,5.其中方差最小的一组是________.6.(2017·景德镇期末)已知cos=-,且θ为锐角,则cos的值为________.7.(2017·吉林二模)设{an}是公差不为零的等差数列,满足a+a=a+a,则该数列的前10项和等于________.8.(2017·长沙长郡中学月考)中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”.其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人第五天走的路程为________里.9.(2016·新课标Ⅰ卷)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在区间(,)上单调,则ω的最大值为________.10.(2017·周口期末)若P(2,-1)为圆x2+y2-2x-24=0的弦AB的中点,则直线AB的方程为________.11.(2017·合肥一模)已知直线y=b与函数f(x)=2x+3和g(x)=ax+lnx分别交于A,B两点.若AB的最小值为2,则a+b=________.12.(2017·肇庆二模)已知AB⊥AC,|AB|=,|AC|=t.若P点是△ABC所在平面内一点,且AP=+,则当t变化时,PB·PC的最大值为________.13.(2017·保定易县中学月考)设数列{an}是等比数列,公比q=2,Sn为{an}的前n项和.记Tn=(n∈N*),则数列{Tn}最大项的值为________.14.(2017·南昌一模)定义在R上的偶函数f(x)满足f(2-x)=...