数列回归课本复习材料1一.基本公式1.数列的同项公式与前n项的和的关系11,1,2nnnsnassn(数列{}na的前n项的和为12nnsaaa).2.等差数列的通项公式*11(1)()naanddnadnN;其前n项和公式为1()2nnnaas1(1)2nnnad211()22dnadn.3.等比数列的通项公式1*11()nnnaaaqqnNq;其前n项的和公式为11(1),11,1nnaqqsqnaq或11,11,1nnaaqqqsnaq.4.等比差数列na:11,(0)nnaqadabq的通项公式为1(1),1(),11nnnbndqabqdbqdqq;其前n项和公式为(1),(1)1(),(1)111nnnbnndqsdqdbnqqqq.二、基本概念1、数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应函数的解析式。2.等差数列的有关概念:(1)等差数列的判断方法:定义法1(nnaadd为常数)或11(2)nnnnaaaan。(2)等差中项:若,,aAb成等差数列,则A叫做a与b的等差中项,且2abA。3.等差数列的性质:用心爱心专心(1)当公差0d时,等差数列的通项公式11(1)naanddnad是关于n的一次函数,且斜率为公差d;前n和1(1)2nnnSnad21()22ddnan是关于n的二次函数常数项0.(2)若公差0d,则为递增等差数列,若公差0d,则为递减等差数列,若公差0d,则为常数列。(3)当mnpq时,则有qpnmaaaa,特别地,当2mnp时,则有2mnpaaa(4)若{}na、是等差数列,232,,nnnnnSSSSS,…也成等差数列(5)在等差数列{}na中,当项数为偶数2n时,SSnd偶奇-;项数为奇数21n时,SSa奇偶中,21(21)nSna中(这里a中即na);:(1):奇偶SSkk。(6)若等差数列{}na、{}nb的前n和分别为nA、nB,且()nnAfnB,则2121(21)(21)nnnnnnanaAbnbB(21)fn.(7)“首正”的递减等差数列中,前n项和的最大值是所有非负项之和;“首负”的递增等差数列中,前n项和的最小值是所有非正项之和。法一:由不等式组000011nnnnaaaa或确定出前多少项为非负(或非正);法二:因等差数列前n项是关于n的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*nN。(8)如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.注意:公共项仅是公共的项,其项数不一定相同,即研究nmab.4.等比数列的有关概念:(1)等比数列的判断方法:定义法1(nnaqqa为常数),其中0,0nqa或11nnnnaaaa(2)n。(2)等比数列的前n和特别提醒:等比数列前n项和公式有两种形式,为此在求等比数列前n项和时,首先要判断公比q是否为1,再由q的情况选择求和公式的形式,当不能判断公比q是否为1时,要对q分1q和1q两种情形讨论求解。用心爱心专心(3)等比中项:若,,aAb成等比数列,那么A叫做a与b的等比中项。提醒:不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个ab。5.等比数列的性质:(1)当mnpq时,则有mnpqaaaa,特别地,当2mnp时,则有2mnpaaa.(2)若{}na是等比数列,且公比1q,则数列232,,nnnnnSSSSS,…也是等比数列。当1q,且n为偶数时,数列232,,nnnnnSSSSS,…是常数数列0,它不是等比数列.(3)若10,1aq,则{}na为递增数列;若10,1aq,则{}na为递减数列;若10,01aq,则{}na为递减数列;若10,01aq,则{}na为递增数列;若0q,则{}na为摆动数列;若1q,则{}na为常数列.(4)当1q时,baqqaqqaSnnn1111,这里0ab,但0,0ab,这是等比数列前n项和公式特征,据此判断数列{}na是否为等比数列。(5)在等比数列{}na中,当项数为偶数2n时,SqS偶奇;项数为奇数21n时,1SaqS奇偶.(7)数列{}na既成等差数列又成等比数列,那么数列{}na是非零常数数列,故常数数列{}na仅是此数列既成等差数列又成等比数列的必要非充分...