电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高三数学估计《导数》考点分类讲解 知识点分析VIP免费

高三数学估计《导数》考点分类讲解 知识点分析_第1页
1/10
高三数学估计《导数》考点分类讲解 知识点分析_第2页
2/10
高三数学估计《导数》考点分类讲解 知识点分析_第3页
3/10
导数考点分类讲解考点1导数的概念对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.例1.(2007年北京卷)()fx是31()213fxxx的导函数,则(1)f的值是.[考查目的]本题主要考查函数的导数和计算等基础知识和能力.[解答过程]22()2,(1)123.fxxf故填3.例2.(2006年湖南卷)设函数()1xafxx,集合M={|()0}xfx,P='{|()0}xfx,若MP,则实数a的取值范围是()A.(-∞,1)B.(0,1)C.(1,+∞)D.[1,+∞)[考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.[解答过程]由0,,1;,1.1xaxaaxx当a>1时当a<1时//2211,0.11111.xxaxaxaayyxxxxa综上可得MP时,1.a考点2曲线的切线(1)关于曲线在某一点的切线求曲线y=f(x)在某一点P(x,y)的切线,即求出函数y=f(x)在P点的导数就是曲线在该点的切线的斜率.(2)关于两曲线的公切线若一直线同时与两曲线相切,则称该直线为两曲线的公切线.典型例题例3.(2007年湖南文)已知函数3211()32fxxaxbx在区间[11),,(13],内各有一个极值点.(I)求24ab的最大值;(II)当248ab时,设函数()yfx在点(1(1))Af,处的切线为l,若l在点A处穿过函数()yfx的图象(即动点在点A附近沿曲线()yfx运动,经过点A时,从l的一侧进入另一侧),求函数()fx的表达式.思路启迪:用求导来求得切线斜率.解答过程:(I)因为函数3211()32fxxaxbx在区间[11),,(13],内分别有一个极值点,所以2()fxxaxb0在[11),,(13],内分别有一个实根,设两实根为12xx,(12xx),则2214xxab,且2104xx≤.于是2044ab≤,20416ab≤,且当11x,23x,即2a,3b时等号成立.故24ab的最大值是16.(II)解法一:由(1)1fab知()fx在点(1(1))f,处的切线l的方程是(1)(1)(1)yffx,即21(1)32yabxa,因为切线l在点(1())Afx,处空过()yfx的图象,所以21()()[(1)]32gxfxabxa在1x两边附近的函数值异号,则1x不是()gx的极值点.而()gx321121(1)3232xaxbxabxa,且22()(1)1(1)(1)gxxaxbabxaxaxxa.若11a,则1x和1xa都是()gx的极值点.所以11a,即2a,又由248ab,得1b,故321()3fxxxx.解法二:同解法一得21()()[(1)]32gxfxabxa2133(1)[(1)(2)]322axxxa.因为切线l在点(1(1))Af,处穿过()yfx的图象,所以()gx在1x两边附近的函数值异号,于是存在12mm,(121mm).当11mx时,()0gx,当21xm时,()0gx;或当11mx时,()0gx,当21xm时,()0gx.设233()1222aahxxx,则当11mx时,()0hx,当21xm时,()0hx;或当11mx时,()0hx,当21xm时,()0hx.由(1)0h知1x是()hx的一个极值点,则3(1)21102ah,所以2a,又由248ab,得1b,故321()3fxxxx.例4.(2006年安徽卷)若曲线4yx的一条切线l与直线480xy垂直,则l的方程为()A.430xyB.450xyC.430xyD.430xy[考查目的]本题主要考查函数的导数和直线方程等基础知识的应用能力.[解答过程]与直线480xy垂直的直线l为40xym,即4yx在某一点的导数为4,而34yx,所以4yx在(1,1)处导数为4,此点的切线为430xy.故选A.例5.(2006年重庆卷)过坐标原点且与x2+y2-4x+2y+25=0相切的直线的方程为()A.y=-3x或y=31xB.y=-3x或y=-31xC.y=-3x或y=-31xD.y=3x或y=31x[考查目的]本题主要考查函数的导数和圆的方程、直线方程等基础知识的应用能力.[解答过程]解法1:设切线的方程为,0.ykxkxy又22521,2,1.2xy圆心为222151,3830.,3.231kkkkkk1,3.3yxyx或故选A.解法2:由解法1知切点坐标为1331(,),,,2222...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高三数学估计《导数》考点分类讲解 知识点分析

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部