2010届高三数学一轮专题复习教案――三角函数一、重点知识回顾二、考点剖析考点一:三角函数的概念【内容解读】三角函数的概念包括任意角的概念和弧度制,任意三角函数(正弦、余弦、正切)的定义,能进行弧度与角度的互化,会由角的终边所经过点的坐标求该角的三角函数值。在学习中要正确区分象限角及它们的表示方法,终边相同角的表示方法,由三角函数的定义,确定终边在各个象限的三角函数的符号。在弧度制下,计算扇形的面积和弧长比在角度制下计算更为方便、简洁。【命题规律】在高考中,主要考查象限角,终边相同的角,三角函数的定义,一般以选择题和填空题为主。例1、(2008北京文)若角α的终边经过点P(1,-2),则tan2α的值为.考点二:同角三角函数的关系【内容解读】同角三角函数的关系有平方关系和商数关系,用同角三角函数定义反复证明强化记忆,在解题时要注意22sincos1,这是一个隐含条件,在解题时要经常能想到它。利用同角的三角函数关系求解时,注意角所在象限,看是否需要分类讨论。例2、(2008浙江理)若cos2sin5,则tan=()(A)21(B)2(C)21(D)2例3、(2007全国卷1理1)是第四象限角,5tan12,则sin()A.15B.15C.513D.513考点三:诱导公式【命题规律】诱导公式的考查,一般是填空题或选择题,有时会计算特殊角的三角函数值,也有些大题用到诱导公式。用心爱心专心例4、(2008陕西文)sin330等于()A.32B.12C.12D.32例5、(2008浙江文)若2cos,53)2sin(则.考点四:三角函数的图象和性质【内容解读】理解正、余弦函数在]0,2π],正切函数在(-2,2)的性质,如单调性、最大值与最小值、周期性,图象与x轴的交点,会用五点法画函数sin()yAxxR,的图象,并理解它的性质:(1)函数图象在其对称轴处取得最大值或最小值,且相邻的最大值与最小值间的距离为其函数的半个周期;(2)函数图象与x轴的交点是其对称中心,相邻两对称中心间的距离也是其函数的半个周期;(3)函数取最值的点与相邻的与x轴的交点间的距离为其函数的14个周期。注意函数图象平移的规律,是先平移再伸缩,还是先伸缩再平移。【命题规律】主要考查三角函数的周期性、单调性、有界性、图象的平移等,以选择题、解答题为主,难度以容易题、中档题为主。例6、(2008天津文)设5sin7a,2cos7b,2tan7c,则()A.abcB.acbC.bcaD.bac例7、(2008山东文、理)函数ππlncos22yxx的图象是()例8、(2008天津文)把函数sin()yxxR的图象上所有的点向左平行移动3个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是()A.sin23yxxR,B.sin26xyxR,用心爱心专心yxπ2π2Oyxπ2π2Oyxπ2π2Oyxπ2π2OA.B.C.D.C.sin23yxxR,D.sin23yxxR,例9、(2008浙江理)在同一平面直角坐标系中,函数])20[)(232cos(,xxy的图象和直线21y的交点个数是()(A)0(B)1(C)2(D)4考点五:三角恒等变换【内容解读】经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用;;能从两角差的余弦公式,导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系,公式之间的规律,能用上述的公式进行简单的恒等变换;注意三角恒等变换与其它知识的联系,如函数的周期性,三角函数与向量等内容。【命题规律】主要考查三角函数的化简、求值、恒等变换。题型主、客观题均有,近几年常有一道解答题,难度不大,属中档题。例10、(2008惠州三模)已知函数xxxxfcossinsin3)(2(I)求函数)(xf的最小正周期;(II)求函数2,0)(xxf在的值域.例11、(2008广东六校联考)已知向量a=(cos23x,sin23x),b=(2sin2cosxx,),且x∈[0,2].(1)求ba(2)设函数baxf)(+ba,求函数)(xf的最值及相应的x的值...