电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

福建省长泰一中高考数学一轮复习《函数的奇偶性》教案VIP免费

福建省长泰一中高考数学一轮复习《函数的奇偶性》教案_第1页
1/4
福建省长泰一中高考数学一轮复习《函数的奇偶性》教案_第2页
2/4
福建省长泰一中高考数学一轮复习《函数的奇偶性》教案_第3页
3/4
福建省长泰一中高考数学一轮复习《函数的奇偶性》教案数,),都可以得出的周期为;②的图象关于点中心对称或的图象关于直线轴对称,均可以得到周期例1.判断下列函数的奇偶性.(1)f(x)=;(2)f(x)=log2(x+)(x∈R);(3)f(x)=lg|x-2|.解:(1) x2-1≥0且1-x2≥0,∴x=±1,即f(x)的定义域是{-1,1}. f(1)=0,f(-1)=0,∴f(1)=f(-1),f(-1)=-f(1),故f(x)既是奇函数又是偶函数.(2)方法一易知f(x)的定义域为R,又 f(-x)=log2[-x+]=log2=-log2(x+)=-f(x),∴f(x)是奇函数.方法二易知f(x)的定义域为R,又 f(-x)+f(x)=log2[-x+]+log2(x+)=log21=0,即f(-x)=-f(x),∴f(x)为奇函数.(3)由|x-2|>0,得x≠2.∴f(x)的定义域{x|x≠2}关于原点不对称,故f(x)为非奇非偶函数.变式训练1:判断下列各函数的奇偶性:(1)f(x)=(x-2);用心爱心专心1基础过关典型例题(2)f(x)=;(3)f(x)=(1)求证:f(x)是奇函数;(2)如果x∈R+,f(x)<0,并且f(1)=-,试求f(x)在区间[-2,6]上的最值.(1)证明: 函数定义域为R,其定义域关于原点对称. f(x+y)=f(x)+f(y),令y=-x,∴f(0)=f(x)+f(-x).令x=y=0,∴f(0)=f(0)+f(0),得f(0)=0.∴f(x)+f(-x)=0,得f(-x)=-f(x),∴f(x)为奇函数.(2)解:方法一设x,y∈R+, f(x+y)=f(x)+f(y),∴f(x+y)-f(x)=f(y). x∈R+,f(x)<0,∴f(x+y)-f(x)<0,∴f(x+y)<f(x). x+y>x,∴f(x)在(0,+∞)上是减函数.又 f(x)为奇函数,f(0)=0,∴f(x)在(-∞,+∞)上是减函数.∴f(-2)为最大值,f(6)为最小值. f(1)=-,∴f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2[f(1)+f(2)]=-3.∴所求f(x)在区间[-2,6]上的最大值为1,最小值为-3.方法二设x1<x2,且x1,x2∈R.则f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1). x2-x1>0,∴f(x2-x1)<0.∴f(x2)-f(x1)<0.即f(x)在R上单调递减.∴f(-2)为最大值,f(6)为最小值. f(1)=-,∴f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2[f(1)+f(2)]=-3.∴所求f(x)在区间[-2,6]上的最大值为1,最小值为-3.变式训练2:已知f(x)是R上的奇函数,且当x∈(-∞,0)时,f(x)=-xlg(2-x),求f(x)的解析式.解: f(x)是奇函数,可得f(0)=-f(0),∴f(0)=0.当x>0时,-x<0,由已知f(-x)=xlg(2+x),∴-f(x)=xlg(2+x),用心爱心专心2即f(x)=-xlg(2+x)(x>0).∴f(x)=即f(x)=-xlg(2+|x|)(x∈R).例3已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=x,求使f(x)=-在[0,2009]上的所有x的个数.(1)证明: f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴f(x)是以4为周期的周期函数.(2)解:当0≤x≤1时,f(x)=x,设-1≤x≤0,则0≤-x≤1,∴f(-x)=(-x)=-x. f(x)是奇函数,∴f(-x)=-f(x),∴-f(x)=-x,即f(x)=x.故f(x)=x(-1≤x≤1)又设1<x<3,则-1<x-2<1,∴f(x-2)=(x-2),又 f(x-2)=-f(2-x)=-f((-x)+2)=-[-f(-x)]=-f(x),∴-f(x)=(x-2),∴f(x)=-(x-2)(1<x<3).∴f(x)=由f(x)=-,解得x=-1. f(x)是以4为周期的周期函数.故f(x)=-的所有x=4n-1(n∈Z).令0≤4n-1≤2009,则≤n≤,又 n∈Z,∴1≤n≤502(n∈Z),∴在[0,2009]上共有502个x使f(x)=-.变式训练3:已知函数f(x)=x2+|x-a|+1,a∈R.(1)试判断f(x)的奇偶性;(2)若-≤a≤,求f(x)的最小值.解:(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),用心爱心专心3此时,f(x)为偶函数.当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,f(a)≠f(-a),f(a)≠-f(-a),此时,f(x)为非奇非偶函数.(2)当x≤a时,f(x)=x2-x+a+1=(x-)2+a+, a≤,故函数f(x)在(-∞,a]上单调递减,从而函数f(x)在(-∞,a]上的最小值为f(a)=a2+1.当x≥a时,函数f(x)=x2+x-a+1=(x+)2-a+, a≥-,故函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.综上得,当-≤...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

福建省长泰一中高考数学一轮复习《函数的奇偶性》教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部