电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

甘肃省秦安县高考数学一轮复习 专训2 四种常见的几何关系的探究-人教版高三全册数学试题VIP免费

甘肃省秦安县高考数学一轮复习 专训2 四种常见的几何关系的探究-人教版高三全册数学试题_第1页
1/7
甘肃省秦安县高考数学一轮复习 专训2 四种常见的几何关系的探究-人教版高三全册数学试题_第2页
2/7
甘肃省秦安县高考数学一轮复习 专训2 四种常见的几何关系的探究-人教版高三全册数学试题_第3页
3/7
专训2四种常见的几何关系的探究位置关系1.如图,已知BE⊥AC,CF⊥AB,BM=AC,CN=AB.求证:AM⊥AN.(第1题)相等关系2.【2015·珠海】已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.(1)如图①,连接BD,AF,则BD________AF.(填“>”“<”或“=”)(2)如图②,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF.求证:BH=GF.(第2题)和差关系3.如图,∠BCA=α,CA=CB,C,E,F分别是直线CD上的三点,且∠BEC=∠CFA=α,请提出对EF,BE,AF三条线段之间数量关系的合理猜想,并证明.(第3题)不等关系4.【2016·贵阳】(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是________________________________________________________________________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.(第4题)答案1.证明:如图,∵BE⊥AC,CF⊥AB,∴∠1+∠BAC=90°,∠2+∠BAC=90°.∴∠1=∠2.又∵BM=CA,AB=NC,∴△ABM≌△NCA.∴∠3=∠N.∵∠N+∠4=90°,∴∠3+∠4=90°,即∠MAN=90°.∴AM⊥AN.(第1题)2.(1)=(2)证明:将△DEF沿FE方向平移,使点E与点C重合,设ED平移后与MN相交于R,如图,(第2题)∵MN∥BC,RC∥EH,∴∠GRC=∠RHE=∠DEF,∠RGC=∠GCB,易得∠GRC=∠RGC,∴△CGR是等腰三角形.∴CG=CR.又∵MN∥BF,CR∥EH,∴四边形RCEH为平行四边形,∴CR=EH.∴CG=HE.由平移的性质得BC=EF,∴BC+CE=CE+EF,即BE=CF.易得∠HEB=∠GCF,∴△BEH≌△FCG(SAS),∴BH=FG.3.解:猜想:EF=BE+AF.证明:∵∠BCE+∠CBE+∠BEC=180°,∠BCE+∠ACF+∠BCA=180°,∠BCA=α=∠BEC,∴∠CBE=∠ACF.又∵∠BEC=∠CFA=α,CB=AC,∴△BEC≌△CFA(AAS).∴BE=CF,EC=FA.∴EF=CF+EC=BE+AF.4.(1)2EG,∴BE+CF>EF.(3)解:BE+DF=EF.证明如下:如图,延长AB至点G,使BG=DF,连接CG.∵∠ABC+∠D=180°,∠ABC+∠CBG=180°,∴∠CBG=∠D.∵CB=CD,∴△CBG≌△CDF(SAS).∴CG=CF,∠BCG=∠DCF.∵∠BCD=140°,∠ECF=70°,∴∠DCF+∠BCE=70°.∴∠BCE+∠BCG=70°.∴∠ECG=∠ECF=70°.∵CE=CE,CG=CF,∴△ECG≌△ECF(SAS).∴EF=EG.∵BE+BG=EG,∴BE+DF=EF.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

甘肃省秦安县高考数学一轮复习 专训2 四种常见的几何关系的探究-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部