2015-2016学年安徽省淮北市高一(上)期末数学试卷一、选择题:本大题共11小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁UM)等于()A.{1,3}B.{1,5}C.{3.5}D.{4,5}2.若A(﹣2,3),B(3,﹣2),C(0,m)三点共线,则m的值为()A.1B.﹣1C.﹣5D.53.下列方程可表示圆的是()A.x2+y2+2x+3y+5=0B.x2+y2+2x+3y+6=0C.x2+y2+2x+3y+3=0D.x2+y2+2x+3y+4=04.如图为某几何体的三视图,根据三视图可以判断这个几何体为()A.圆锥B.三棱锥C.三棱柱D.三棱台5.若函数f(x)满足f(3x+2)=9x+8,则f(x)是()A.f(x)=9x+8B.f(x)=3x+2C.f(x)=﹣3﹣4D.f(x)=3x+2或f(x)=﹣3x﹣46.已知直线l1:2x+my﹣7=0与直线l2:mx+8y﹣14=0,若l1∥l2,则m()A.4B.﹣4C.4或﹣4D.以上都不对7.设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β8.下列各式错误的是()A.30.8>30.7B.log0.60.4>log0.60.5C.log0.750.34>logπ3.14D.0.75﹣0.3<0.750.19.已知f(x)是奇函数,且在(0,+∞)上是增函数,若f(4)=0,则满足xf(x)≤0的x取值范围是()A.[﹣4,4]B.(﹣4,4)C.[﹣4,0)∪(0,4]D.(﹣∞,4)∪(4,+∞)10.如图所示,在直三棱柱ABC﹣A1B1C1中,BC=AC,AC1⊥A1B,M,N分别是A1B1,AB的中点,给出下列结论:①C1M⊥平面A1ABB1,②A1B⊥NB1,③平面AMC1∥平面CNB1,其中正确结论的个数为()A.0B.1C.2D.311.(2015秋淮北期末)(B类题)如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=AB,则下列结论正确的是()A.PB⊥ADB.平面PAB⊥平面PBCC.直线BC∥平面PAED.△PFB为等边三角形二、填空题:本大题共4个小题,每小题6分,共24分.12.(6分)(2015秋淮北期末)过点(2,1)且与直线x+3y+4=0垂直的直线方程为.13.(6分)(2015秋淮北期末)函数f(x)=|x2﹣1|﹣a恰有两个零点,则实数a的取值范围为.14.(6分)(2007天津)已知两圆x2+y2=10和(x﹣1)2+(y﹣3)2=20相交于A,B两点,则直线AB的方程是.15.(6分)(2015秋淮北期末)(A类题)如图,在棱长为1的正方形ABCD﹣A1B1C1D1中选取四个点A1,C1,B,D,若A1,C1,B,D四个点都在同一球面上,则该球的表面积为.16.(6分)(2015秋淮北期末)已知三棱锥P﹣ABC中,PA=PB=PC=4,且PA、PB、PC两两垂直,若此三棱锥的四个顶点都在球面上,则这个球的体积为cm3.三、解答题:本大题共7小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)(2015秋淮北期末)已知函数f(x)=﹣的定义域为集合A.且B={x∈Z|2<x<10},C={x∈R|x<a或x>a+1}.(Ⅰ)求A和(∁UA)∩B;(Ⅱ)若A∪C=R,求实数a的取值范围.18.(12分)(2015秋淮北期末)已知点P(2,﹣1).(1)直线m经过点P,且在两坐标轴上的截距相等.求直线m的方程:(2)直线n经过点P.且坐标原点到该直线的距离为2.求直线n的方程.19.(12分)(2015秋淮北期末)已知圆的圆心为坐标原点,且经过点(﹣1,).(1)求圆的方程;(2)若直线l1:x﹣y+b=0与此圆有且只有一个公共点,求b的值;(3)求直线l2:x﹣=0被此圆截得的弦长.20.(12分)(2015秋淮北期末)如图,AB=AD,∠BAD=90°,M,N,G分别是BD,BC,AB的中点,将等边△BCD沿BD折叠到△BC′D的位置,使得AD⊥C′B.(Ⅰ)求证:平面GNM∥平面ADC′;(Ⅱ)求证:C′A⊥平面ABD.21.(12分)(2015秋淮北期末)(A类题)设f(x)=,其中e为自然底数.(Ⅰ)若f(m)=2,求实数m的值;(Ⅱ)求f(x)的反函数f﹣1(x);(Ⅲ)判断f(x)的反函数f﹣1(x)的奇偶性.22.(2015秋淮北期末)(B类题)已知函数f(x)=.(Ⅰ)求f{f(f(﹣1))}的值;(Ⅱ)画出函数f(x)的图象;(Ⅲ)指出函数f(x)的单调区间.23.(12分)(2015秋淮北期末)设函数f(x)=,g(x)=x+1﹣a(1)求...