专题1概率、二项分布与正态分布(理科)【三年高考】1.【2016高考新课标1卷】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()(A)(B)(C)(D)【答案】B【解析】如图所示,画出时间轴:小明到达的时间会随机的落在图中线段中,而当他的到达时间落在线段或时,才能保证他等车的时间不超过10分钟根据几何概型,所求概率.故选B.8:208:107:507:408:308:007:30BACD2.【2016高考新课标2理数】从区间随机抽取个数,,…,,,,…,,构成n个数对,,…,,其中两数的平方和小于1的数对共有个,则用随机模拟的方法得到的圆周率的近似值为(A)(B)(C)(D)【答案】C【解析】利用几何概型,圆形的面积和正方形的面积比为,所以.选C.3.【2016高考江苏卷】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是▲.【答案】【解析】点数小于10的基本事件共有30种,所以所求概率为4.【2016高考山东理数】在上随机地取一个数k,则事件“直线y=kx与圆相交”发生的概率为.【答案】5.【2016年高考北京理数】A、B、C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);A班66.577.58B班6789101112C班34.567.5910.51213.5(1)试估计C班的学生人数;(2)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从A、B、C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记,表格中数据的平均数记为,试判断和的大小,(结论不要求证明)【解析】(1)由题意知,抽出的名学生中,来自班的学生有名,根据分层抽样方法,班的学生人数估计为;(2)设事件为“甲是现有样本中班的第个人”,,事件为“乙是现有样本中班的第个人”,,由题意可知,,;,,,,.设事件为“该周甲的锻炼时间比乙的锻炼时间长”,由题意知,,因此(3)根据平均数计算公式即可知,.6.【2015高考广东,理4】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.1B.C.D.【答案】.7.【2015高考新课标1,理4】投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()(A)0.648(B)0.432(C)0.36(D)0.312【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为=0.648,故选A.8.【2015高考湖北,理4】设,,这两个正态分布密度曲线如图所示.下列结论中正确的是()A.B.C.对任意正数,D.对任意正数,【答案】C9.【2015高考广东,理13】已知随机变量服从二项分布,若,,则.【答案】.【解析】依题可得且,解得,故应填入.10.【2014高考湖北卷理第7题】由不等式确定的平面区域记为,不等式,确定的平面区域记为,在中随机取一点,则该点恰好在内的概率为()A.B.C.D.【答案】D【解析】依题意,不等式组表示的平面区域如图,由几何概型公式知,该点落在内的概率为,选D.11.【2014全国1高考理第5题】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【答案】D12.【2014全国2高考理第5题】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【答案】A【解析】设A=“某一天的空气质量为优良”,B=“随后一天的空气质量为优良”,则,故选A.【三年高考命题回顾】纵观前三年各地高考试题,概率问题是每年高考必考内容.主要考查等可能事件的概率计算公式,互斥事件的概率加法公式,对立事件的概率减法...