立体几何2226.在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=,BC=4,在A1在底面ABC的投影是线段BC的中点O。(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(2)求平面A1B1C与平面BB1C1C夹角的余弦值。【答案】27.平面图形如图4所示,其中是矩形,,,。现将该平面图形分别沿和折叠,使与所在平面都与平面垂直,再分别连接,得到如图2所示的空间图形,对此空间图形解答下列问题。(Ⅰ)证明:;(Ⅱ)求的长;(Ⅲ)求二面角的余弦值。【答案】本题考查平面图形与空间图形的转化,空间直线与直线、直线与平面、平面与平面的位置关系的判定。空间线段长度和空间角的余弦值的计算等基础知识和基本技能,考查空间想象能力,推理论证能力和求解能力。【解析】(综合法)28.如图,在四棱锥中,底面是矩形,底面,是的中点,已知,,,求:(1)三角形的面积;(2)异面直线与所成的角的大小。【答案】29.如图5,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.【答案】解法1(Ⅰ如图(1)),连接AC,由AB=4,,E是CD的中点,所以所以而内的两条相交直线,所以CD⊥平面PAE.在中,所以于是又梯形的面积为所以四棱锥的体积为解法2:如图(2),以A为坐标原点,所在直线分别为建立空间直角坐标系.设则相关的各点坐标为:(Ⅰ)易知因为所以而是平面内的两条相交直线,所以