0且-1<<0或>0当或时即当且≠0时,即当或=2时,即13.已知是各项为不同的正数的等差数列,、、成等差数列.又,.(Ⅰ)证明为等比数列;(Ⅱ)如果数列前3项的和等于,求数列的首项和公差.(I)证明:∵、、成等差数列∴2=+,即ABCDEFP(II)解。∵∴=3∴==314.已知是各项为不同的正数的等差数列,、、成等差数列.又,.(Ⅰ)证明为等比数列;(Ⅱ)如果无穷等比数列各项的和,求数列的首项和公差.(注:无穷数列各项的和即当时数列前项和的极限)(Ⅱ)如果无穷等比数列的公比=1,则当→∞时其前项和的极限不存在。因而=≠0,这时公比=,这样的前项和为则S=由,得公差=3,首项==315.在等差数列中,公差的等差中项.已知数列成等比数列,求数列的通项16.已知数列的首项前项和为,且(I)证明数列是等比数列;(II)令,求函数在点处的导数并比较与的大小.解:由已知可得两式相减得即从而当时所以又所以从而故总有,又从而即数列是等比数列;(II)由(I)知因为所以从而==-=由上-==12①当时,①式=0所以;当时,①式=-12所以当时,又所以即①从而17.假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?18.已知.(Ⅰ)当时,求数列的前n项和;(Ⅱ)求.解:(Ⅰ)当时,.这时数列的前项和.①①式两边同乘以,得②①式减去②式,得若,,若,
1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。
碎片内容