§3.5.3:等比数列综合练习目的:系统复习等比数列的概念及有关知识,要求学生能熟练的处理有关问题。过程:一、处理《教学与测试》P87第42课习题课(2)1、“练习题”1选择题。2、(例一)略:注意需用性质。3、(例三)略:作图解决:解:nnnnPPPPPPPPBPABAP143322111nnaaaa21222122113221121211nnnnaa二、补充例题:1、在等比数列na中,400,60,364231nSaaaa,求n的范围。解:∵3622131qaaa,∴61qa又∵6012142qqaaa,且012q,∴01qa,∴101,621qqa解之:323211qaqa或当3,21qa时,40134002132111nnnnqqaS,∴6n(∵2733572936)当3,21qa时,80134004132nnnS,∵*Nn且必须为偶数∴8n,(∵65613,2187387)用心爱心专心BAP2P1P3P4Pn2、等比数列na前n项和与积分别为S和T,数列na1的前n项和为'S,求证:nSST'2证:当1q时,1naS,naT1,1'anS,∴221111TaannaSSnnn,(成立)当1q时,1111,,1111111'12111qqaqqqaSqaTqqaSnnnnnn,221211121'TqaqaSSnnnnnn,(成立)综上所述:命题成立。3、设首项为正数的等比数列,它的前n项之和为80,前n2项之和为6560,且前n项中数值最大的项为54,求此数列。解:81821265601118011211nnnnqqqqaqqa代入(1),qqan18011,得:011qa,从而1q,∴na递增,∴前n项中数值最大的项应为第n项。∴5411nqa,∴3,275481,5411111nnnnnnqqqqqqqq,∴21a,∴此数列为162,54,18,6,2用心爱心专心4、设数列na前n项之和为nS,若2,121SS且202311nSSSnnn,问:数列na成GP吗?解:∵02311nnnSSS,∴0211nnnnSSSS,即021nnaa即:21nnaa2n,∴na成GP2n又:2,1,11212211aaSSaSa,∴na不成GP,但2n时成GP,即:22111nnann。三、作业:《教学与测试》P87-88练习题3,4,5,6,7补充:1、三数成GP,若将第三数减去32,则成AP,若将该等差数列中项减去4,以成GP,求原三数。(2,10,50或938,926,92)2、一个等比数列前n项的和为,48nS前n2项之和602nS,求nS3。(63)3、在等比数列中,已知:36,463Sa,求na。1271n《精编》P176-177第2,4题。用心爱心专心