电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高一数学下册过关检测试题14 新人教A版VIP免费

高一数学下册过关检测试题14 新人教A版_第1页
1/6
高一数学下册过关检测试题14 新人教A版_第2页
2/6
高一数学下册过关检测试题14 新人教A版_第3页
3/6
函数与映射基础巩固站起来,拿得到!1.下列各图中,可表示函数y=f(x)的图象的只可能是()答案:D解析:由函数的定义可知.2.若f(x)=,则方程f(4x)=x的根是()A.B.-C.2D.-2答案:A解析:由f(4x)=x,得=x4x2-4x+1=0x=.3.下列各组中的函数图象相同的是()A.f(x)=1,g(x)=x0B.f(x)=1,g(x)=C.f(x)=,g(x)=(x+3)(x+3)0D.f(x)=|x|,g(x)=答案:C解析:考查定义域与对应法则.4.设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示集合M到集合N的函数关系的有()A.0个B.1个C.2个D.3个答案:C解析:由图象及函数的定义域与值域可知②③正确.5.如果映射f:A→B的象的集合是Y,原象的集合是X,那么X与A的关系是_______________;Y与B的关系是__________________.答案:X=AYB解析:由函数定义易知.6.设函数f(x)=若f(x)=3,则x=_______________.答案:解析:分别讨论7.在下列各个条件下求f(x):(1)f(2x+1)=x2-3x+1;(2)f()=;(3)f(x+)=x2+.解:(1)设2x+1=t,则x=.∴f(t)=f(2x+1)=x2-3x+1=()2-3·+1=-2t+.∴f(x)=-2x+.(2)设t=≠0,则x=.∴f(t)=.∴f(x)=(x∈R且x≠0,x≠±1).(3)∵f(x+)=x2+=(x+)2-2,∴f(x)=x2-2,x∈(-∞,-2)∪[2,+∞].能力提升踮起脚,抓得住!8.下面三个对应(Z为整数集);(1)Z中的元素x与2x对应;(2)Z中的元素x与对应;(3)Z中的元素x与x2-1对应,其中Z到Z的映射有()A.0个B.1个C.2个D.3个答案:C解析:根据A中元素任意性,B中元素唯一性知(1)(3)对.9.确定函数y=x2+1的对应关系是()A.f:R→RB.f:(0,+∞)→(0,+∞)C.f:R→(0,+∞)D.f:R→[1,+∞)答案:D解析:函数y=x2+1的定义域是R,对任意的x∈R,有y=x2+1≥1,即y∈[1,+∞).10.设A到B的映射f1:x→2x+1,B到C的映射f2:y→y2-1,则A到C的映射f3是____________.答案:z→4z2+4z解析:x→2x+1,(2x+1)2-1=4x2+4x,即z→4z2+4z.11.下列对应:(1)A=R+,B=R,对应法则是“求平方根”.(2)A={x|-3≤x≤3},B={y|0≤y≤1},对应法则是“平方除以9”.(3)A={x|x∈N*},B={-1,1},对应法则f:x→y=(-1)x(x∈A,y∈B).(4)A={平面α内的圆},B={平面α内的矩形},对应法则是“作圆内接矩形”.(5)A=R,B=R+,f:x→y=x2-1.其中,是A到B的映射有_________________.(将是映射的序号全部填上)答案:(2)(3)解析:映射是一类特殊的对应,可一对一或多对一的对应,但不能是一对多的对应.12.已知函数f(x)=(a、b为常数,a≠0)满足f(2)=1,f(x)=x有唯一解,求函数f(x)的解析式和f[f(-3)]的值.解:∵f(2)=1,∴1=,即2a+b=2.①又∵f(x)=x有唯一解,即=x有唯一解,∴x·=0.解之,得x1=0,x2=,∵有唯一的解,∴x1=x2=0,得b=1.②由①②得a=,b=1.∴f(x)=.故f[f(-3)]=f()=f(6)=.13.已知函数f(x)、g(x)同时满足条件:对一切实数x、y都有g(x-y)=g(x)·g(y)+f(x)·f(y);f(-1)=-1,f(0)=0,f(1)=1.试求g(0),g(1),g(2)的值.解:由g(x-y)=g(x)·g(y)+f(x)·f(y)知,g(x)=g(x-0)=g(x)·g(0)+f(x)·f(0),又f(0)=0,故g(x)=g(x)·g(0)g(0)=1〔g(x)不恒为零,否则g(0)=g(1-1)=g2(1)+f2(1)=0f(1)=0与f(1)=1矛盾〕.又g(-x)=g(0-x)=g(0)·g(x)+f(0)·f(x)=g(x)g(-1)=g(1),又g(0)=g(1-1)=g2(1)+f2(1)=1g(1)=0〔f(1)=1〕,则g(-1)=g(1)=0.g(2)=g[1-(-1)]=g(1)·g(-1)+f(1)·f(-1)=-1.拓展应用跳一跳,够得着!14.已知定义域为R的函数f(x)满足f(a+b)=f(a)·f(b)(a、b∈R)且f(x)>0,若f(1)=,则f(-2)等于()A.2B.4C.D.答案:B解析:由f(a+b)=f(a)·f(b),知f(0+0)=f2(0)f(0)=1(f(x)>0),又f(2)=f(1+1)=f2(1)=,f(2-2)=f(2)·f(-2)=f(0)=1f(-2)==4.15.设A={a,b,c},B={-1,0,1},映射f:A→B满足f(a)=f(b)+f(c),则映射f:A→B的个数有_______个.答案:7解析:(1)当A中元素都对应0时,满足f(a)=f(b)+f(c),有一种映射.(2)当A中元素对应B中的两个元素时,满足f(a)=f(b)+f(c),有四种映射:1=1+0,1=0+1,-1=-1+0,-1=0+(-1).(3)当A中元素对应B中三个元素时,满足f(a)=f(b)+f(c),有两种映射:0=1+(-1),0=(-1)+1.∴满足条件的映射共有7个.16.如图所示,等腰梯形的两底分别为AD=2a,BC=a,∠BAD=45°,直线MN⊥AD,交AD于M,交折线ABCD于N,设AM=x,试将梯形ABCD位于直线MN左侧的面积y表示成x的函数,并求此函数的定义域.解:过B、C分别作边AD的垂线,垂足分别为H和G,则AH=,AG=a,当M位于H左侧时,AM=x,MN=x.故y=S△AMN=x2(0≤x<);当M位于H、G之间时,y=S梯形ABNM=(AM+BN)·MN=(x+x-)·=ax-a2(≤x<);当M位于G、D之间时,y=S梯形ABCD-S△DMN=··-(2a-x)2=-x2+2ax-a2(≤x≤2a).故y=其定义域为[0,2a],值域为[0,a2].

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高一数学下册过关检测试题14 新人教A版

海博书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部