整式的加减学习内容:整式的加减(三)教学设计(收获)二、小组学习:(合作共赢!)已知a、b、c在数轴上对应的位置如图所示,试化简︱c-d︱+︱a+c︱-︱a-b︱三、展示反馈:(大胆亮出你自已!)[1、自然数x乘5减7,再把结果乘2加14,按上面方法计算得到的个位数字一定是。2、若A=2007a+2006,B=2007a+2005,求(A-B)2的值。3.如果某三角形第一条边长为(2a+b)厘米,第二条边比第一条边长(a+b)厘米,第三条边比第一条边的2倍少b厘米,求这个三角形的周长。4、有这样一道题:“当a=-3,b=2时,求代数式7a3-6a3b+4a2b+3a3+6a3b-3a2b-10a3+3的值。”甲同学把a=-3错抄成a=3,但他计算的结果却是正确。请你说说这是怎么回事?四、拓展提升(成功一定属于你!)1、小马虎看错了运算符号,把一个代数式减去-4a2+2b2+3c2误认为加上-4a2+2b2+3c2,结果得出的答案是a2-4b2-2c2.求原题的正确答案。学习目标:经历用字母表示数的过程,并会进行整式的加减运算,并说明其中的算理。重点、难点:会进行整式的加减运算。一、自主学习(认真自学,相信你一定收获多多!)(一)自学指导:1、完成下列问题,按步骤做一做。(1)任意写一个两位数(2)交换这个两位数的十位数字和个位数字,可得到(3)这两个数的和为(4)再写几个两位数重复上面的过程。如:、、观察这些和有什么规律?。尝试用代数式在下面表示上述过程。(原数a表示个位数字,b表示十位数字)2、任意写一个三位数,再交换它的百位数字与个位数字,又得到一个新数,最后两个数相减。多写几个数并由此探究相减后结果的规律,再把这个过程用代数式表示在下面。由此可得:(1)表示一个多位数的方法(2)用代数式表示两数的和差时应注意3、读例1的解题过程,再次体会在列式求两个多项式的和差时的注意点。(二)自学检测(相信你一定行!)若M=12p+3q,N=3q-7p,求M+N、M-N、2M-3N、-3M+4N的值。教学反思(疑惑)ab0c