课时提升练(五十五)合情推理与演绎推理一、选择题1.如图1125是某年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是()图1125【解析】该五角星对角上的两盏花灯依次按顺时针方向亮两盏,故下一个呈现出来的图形是A.【答案】A2.数列2,5,11,20,32,x,…中的x等于()A.28B.32C.33D.47【解析】由数与数间的关系,我们发现相邻两数间依次相差“3,6,9,12,15,…”.故x=32+15=47.【答案】D3.观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…可以得出的一般结论是()A.n+(n+1)+(n+2)+…+(3n-2)=n2B.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2C.n+(n+1)+(n+2)+…+(3n-1)=n2D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2【解析】由前四个等式我们发现第n个等式左边共有2n-1项,故为n+(n+1)+…+(3n-2)=(2n-1)2.【答案】B4.定义一种运算“*”:对于自然数n满足以下运算性质:(1)1]()A.nB.n+1C.n-1D.n2【解析】由(n+1)*1=n*1+1,得n*1=(n-1)*1+1=(n-2)*1+2=…=1]【答案】1A5.(2014·银川模拟)当x∈(0,+∞)时可得到不等式x+≥2,x+=++2≥3,由此可以推广为x+≥n+1,取值p等于()A.nnB.n2C.nD.n+1【解析】 x∈(0,+∞)时可得到不等式x+≥2,x+=++2≥3,∴在p位置出现的数恰好是不等式左边分母xn的指数n的指数次方,即p=nn.【答案】A6.(2014·长春模拟)类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=ax-a-x,C(x)=ax+a-x,其中a>0,且a≠1,下面正确的运算公式是()①S(x+y)=S(x)C(y)+C(x)S(y);②S(x-y)=S(x)C(y)-C(x)S(y);③2S(x+y)=S(x)C(y)+C(x)S(y);④2S(x-y)=S(x)C(y)-C(x)S(y).A.①②B.③④C.①④D.②③【解析】经验证易知①②错误.依题意,注意到2S(x+y)=2(ax+y-a-x-y),S(x)C(y)+C(x)S(y)=2(ax+y-a-x-y),因此有2S(x+y)=S(x)C(y)+C(x)S(y);同理有2S(x-y)=S(x)C(y)-C(x)S(y).综上所述,选B.【答案】B二、填空题7.(2014·陕西高考)观察分析下表中的数据:多面体面数(F)顶点数(V)棱数(E)三棱柱569五棱锥6610立方体6812猜想一般凸多面体中F,V,E所满足的等式是________.【解析】观察分析、归纳推理.观察F,V,E的变化得F+V-E=2.【答案】F+V-E=28.(2014·安徽高考)如图1126,在等腰直角三角形ABC中,斜边BC=2,过点A作BC的垂线,垂足为A1,过点A1作AC的垂线,垂足为A2;过点A2作A1C的垂线,垂足为A3;…,依此类推,设BA=a1,AA1=a2,A1A2=a3,…,A5A6=a7,则a7=________.图1126【解析】根据题意易得a1=2,a2=,a3=1,∴{an}构成以a1=2,q=的等比数列,∴a7=a1q6=2×6=.2【答案】9.二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,观察发现S′=l;三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)V=πr3,观察发现V′=S.则四维空间中“超球”的四维测度W=2πr4,猜想其三维测度V=________.【解析】由已知,可得圆的一维测度为二维测度的导函数;球的二维测度是三维测度的导函数.类比上述结论,“超球”的三维测度是四维测度的导函数,即V=W′=(2πr4)′=8πr3.【答案】8πr3三、解答题10.(2012·福建高考)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2(-18°)+cos248°-sin(-18°)cos48°;⑤sin2(-25°)+cos255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.【解】(1)选择②式,计算如下:sin215°+cos215°-sin15°cos15°=1-sin30°=.(2)归纳三角恒等式sin2α+cos2(30°-α)-sinαcos(30°-α)=.证明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)=+-sinα(cos30°cosα+sin30°sinα)=-cos2α++(cos60°cos2α...