2013年高考数学总复习第五章第3课时等比数列随堂检测(含解析)新人教版1.在等比数列{an}中,a2a6=16,a4+a8=8,则=()A.1B.-3C.1或-3D.-1或3解析:选A.由a2a6=16,得a=16⇒a4=±4,又a4+a8=8,可得a4(1+q4)=8.∵q4>0,∴a4=4,∴q2=1.=q10=1.2.(2012·辽宁质检)已知各项不为0的等差数列{an}满足2a2-a+2a12=0,数列{bn}是等比数列,且b7=a7,则b3b11等于()A.16B.8C.4D.2解析:选A.由等差数列性质得a2+a12=2a7,所以4a7-a=0,又a7≠0,所以a7=4,所以b7=4.由等比数列性质得b3b11=b=16,故选A.3.(2011·高考北京卷)在等比数列{an}中,若a1=,a4=4,则公比q=________;a1+a2+…+an=________.解析:由等比数列的性质知q3==8,∴q=2.∴an=·2n-1=2n-2,∴a1+a2+…+an==2n-1-.答案:22n-1-4.在等差数列{an}中,a1=1,a7=4,数列{bn}是等比数列,已知b2=a3,b3=,则满足bn<的最小自然数n是________.解析:{an}为等差数列,a1=1,a7=4,6d=3,d=.∴an=,{bn}为等比数列,b2=2,b3=,q=.∴bn=6×()n-1,bn<=,∴81<,即3n-2>81=34.∴n>6,从而可得nmin=7.答案:75.已知数列{an}满足:a1=1,a2=a(a>0).数列{bn}满足bn=anan+1(n∈N*).(1)若{an}是等差数列,且b3=12,求a的值及{an}的通项公式;(2)若{an}是等比数列,求{bn}的前n项和Sn.解:(1)∵{an}是等差数列,a1=1,a2=a,∴an=1+(n-1)(a-1).又∵b3=12,∴a3a4=12,即(2a-1)(3a-2)=12,解得a=2或a=-.∵a>0,∴a=2.∴an=n.(2)∵数列{an}是等比数列,a1=1,a2=a(a>0),∴an=an-1.∴bn=anan+1=a2n-1.∵=a2,∴数列{bn}是首项为a,公比为a2的等比数列.当a=1时,Sn=n;当a≠1时,Sn==.1