河南省郑州市智林学校2014-2015学年高一上学期12月月考数学试卷一、单项选择题(12x5=60)1.(5分)设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lgx,则满足f(x)>0的x的取值范围是()A.(﹣1,0)B.(1,+∞)C.(﹣1,0)∪(1,+∞)D.(﹣1,+∞)2.(5分)函数f(x)=|x﹣2|﹣lnx在定义域内零点的个数为()A.0B.1C.2D.33.(5分)若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B=()A.{x|﹣1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.∅4.(5分)集合{1,2,3}的真子集的个数为()A.5B.6C.7D.85.(5分)设函数f(x)=,则满足f(x)≤2的x的取值范围是()A.B.C.时n≤f(x)≤m恒成立,则m﹣n的最小值是()A.B.C.1D.9.(5分)已知集合A={x|x2﹣2x+a>0},且1∉A,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.二、填空题(4x5=20)13.(4分)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=.14.(4分)狄利克莱函数D(x)=则D(D(x))=.15.(4分)设x∈(0,1),幂函数y=xα的图象在直线y=x的上方,则α的取值范围是.16.(4分)若函数f(x)=x2+(a﹣1)x+a为偶函数,则a=.17.(4分)定义:如果函数y=f(x)在定义域内给定区间上存在x0(a<x0<b),满足f(x0)=,则称函数y=f(x)是上的“平均值函数”,x0是它的一个均值点.例如y=|x|是上的平均值函数,0就是它的均值点.若函数f(x)=x2﹣mx﹣1是上的“平均值函数”,则实数m的取值范围是.1三、解答题18.设函数f(x)=(1)当时,求函数f(x)的值域;(2)若函数f(x)是(﹣∞,+∞)上的减函数,求实数a的取值范围.19.已知函数f(x)=2sinxcosx,x∈R.(1)求函数f(x)的最小正周期;(2)判断函数y=f(x)的奇偶性,并说明理由.20.已知幂函数为偶函数,且在区间(0,+∞)上是单调递减函数.(1)求函数f(x)的解析式;(2)讨论的奇偶性.21.已知函数f(x)=ax﹣3,g(x)=bx﹣1+cx﹣2(a,b∈R)且g(﹣)﹣g(1)=f(0)(1)试求b,c所满足的关系式;(2)若b=0,方程f(x)=g(x)在(0,+∞)有唯一解,求a的取值范围.22.已知函数f(x)=loga(3﹣ax).(1)当时,函数f(x)恒有意义,求实数a的取值范围;(2)是否存在这样的实数a,使得函数f(x)在区间上为增函数,并且f(x)的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.23.已知两条直线l1:y=m和l2:y=(m>0),l1与函数y=|log2x|的图象从左至右相交于点A、B,l2与函数y=|log2x|的图象从左至右相交于点C、D.记线段AC和BD在x轴上的投影长度分别为a、b.当m变化时,求的最小值.河南省郑州市智林学校2014-2015学年高一上学期12月月考数学试卷参考答案与试题解析一、单项选择题(12x5=60)21.(5分)设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lgx,则满足f(x)>0的x的取值范围是()A.(﹣1,0)B.(1,+∞)C.(﹣1,0)∪(1,+∞)D.(﹣1,+∞)考点:对数函数的单调性与特殊点.专题:综合题;数形结合;数形结合法.分析:由题设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lgx,可得在(0,1)上函数值小于0,在(1,+∞)函数值大于0,再由奇函数的性质判断出(﹣∞,0)上的函数值为正的部分即可.解答:解:由题意及对数函数的性质得函数在(0,1)上函数值小于0,在(1,+∞)函数值大于0,又函数f(x)是定义在R上的奇函数,∴函数f(x)在(﹣1,0)函数值大于0∴满足f(x)>0的x的取值范围是(﹣1,0)∪(1,+∞)故选C点评:本题考查对数函数的单调性与特殊点,以及函数的奇函数的性质,求解本题的关键是熟练对数函数的图象以及奇函数的对称性.2.(5分)函数f(x)=|x﹣2|﹣lnx在定义域内零点的个数为()A.0B.1C.2D.3考点:函数的零点;对数函数的单调性与特殊点.专题:函数的性质及应用.分析:先求出函数的定义域,再把函数转化为对应的方程,在坐标系中画出两个函数y1=|x﹣2|,y2=lnx(x>0)的图象求出方程的根的个数,即为函数零点的个数.解答:解:...