三角函数11解答题23.已知分别为三个内角的对边,(1)求(2)若,的面积为;求.24.已知向量,,设函数的图象关于直线对称,其中,为常数,且.(Ⅰ)求函数的最小正周期;(Ⅱ)若的图象经过点,求函数在区间上的取值范围.【答案】(Ⅰ)因为.由直线是图象的一条对称轴,可得,所以,即.又,,所以,故.所以的最小正周期是.25.设函数。(I)求函数的最小正周期;(II)设函数对任意,有,且当时,,求函数在上的解析式。【答案】本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力。【解析】,(I)函数的最小正周期(2)当时,当时,当时,得函数在上的解析式为。26.函数在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形。(Ⅰ)求的值及函数的值域;(Ⅱ)若,且,求的值。【答案】本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想.27.函数()的最大值为3,其图像相邻两条对称轴之间的距离为,(1)求函数的解析式;(2)设,则,求的值。【答案】31.设,其中(Ⅰ)求函数的值域(Ⅱ)若在区间上为增函数,求的最大值.【答案】32.在ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=cosC.(Ⅰ)求tanC的值;(Ⅱ)若a=,求ABC的面积.【答案】本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点。(Ⅰ)∵cosA=>0,∴sinA=,又cosC=sinB=sin(A+C)=sinAcosC+sinCcosA=cosC+sinC.整理得:tanC=.(Ⅱ)由图辅助三角形知:sinC=.又由正弦定理知:,故.(1)对角A运用余弦定理:cosA=.(2)解(1)(2)得:orb=(舍去).∴ABC的面积为:S=.33.在中,角A、B、C的对边分别为a,b,c。角A,B,C成等差数列。(Ⅰ)求的值;(Ⅱ)边a,b,c成等比数列,求的值。【答案】【点评】本题主要考查三角形的正弦定理、余弦定理、三角形内角和定理及等差、等比数列的定义,考查转化思想和运算求解能力,属于容易题。第二小题既可以利用正弦定理把边的关系转化为角的关系,也可以利用余弦定理得到边之间的关系,再来求最后的结果。34.在△ABC中,角A,B,C的对边分别为a,b,c。已知,。(1)求证:(2)若,求△ABC的面积。【答案】36.已知函数(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在区间上的最大值和最小值.【答案】