电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

创新设计(浙江专用)高考数学二轮复习 教师用书1 专题一 函数与导数、不等式-人教版高三全册数学试题VIP免费

创新设计(浙江专用)高考数学二轮复习 教师用书1 专题一 函数与导数、不等式-人教版高三全册数学试题_第1页
1/54
创新设计(浙江专用)高考数学二轮复习 教师用书1 专题一 函数与导数、不等式-人教版高三全册数学试题_第2页
2/54
创新设计(浙江专用)高考数学二轮复习 教师用书1 专题一 函数与导数、不等式-人教版高三全册数学试题_第3页
3/54
教师用书1专题一函数与导数、不等式第1讲函数图象与性质及函数与方程高考定位1.以分段函数、二次函数、指数函数、对数函数为载体,考查函数的定义域、最值与值域、奇偶性、单调性;2.利用图象研究函数性质、方程及不等式的解,综合性强;3.以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理.数形结合思想是高考考查函数零点或方程的根的基本方式.真题感悟1.(2016·山东卷)已知函数f(x)的定义域为R,当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>时,f=f,则f(6)=()A.-2B.-1C.0D.2解析当x>时,f=f,即f(x)=f(x+1),∴f(6)=f(1).当x<0时,f(x)=x3-1且-1≤x≤1,f(-x)=-f(x),∴f(6)=f(1)=-f(-1)=2,故选D.答案D2.(2015·全国Ⅱ卷)设函数f(x)=则f(-2)+f(log212)=()A.3B.6C.9D.12解析因为-2<1,log212>log28=3>1,所以f(-2)=1+log2[2-(-2)]=1+log24=3,f(log212)=2log212-1=2log212×2-1=12×=6,故f(-2)+f(log212)=3+6=9,故选C.答案C3.(2016·全国Ⅰ卷)函数y=2x2-e|x|在[-2,2]的图象大致为()解析f(2)=8-e2>8-2.82>0,排除A;f(2)=8-e2<8-2.72<1,排除B;在x>0时,f(x)=2x2-ex,f′(x)=4x-ex,当x∈时,f′(x)<×4-e0=0,因此f(x)在上单调递减,排除C,故选D.答案D4.(2016·山东卷)已知函数f(x)=其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是________.解析如图,当x≤m时,f(x)=|x|;当x>m时,f(x)=x2-2mx+4m在(m,+∞)为增函数,若存在实数b,使方程f(x)=b有三个不同的根,则m2-2m·m+4m<|m|. m>0,∴m2-3m>0,解得m>3.答案(3,+∞)考点整合1.函数的性质(1)单调性①用来比较大小,求函数最值,解不等式和证明方程根的唯一性.②常见判定方法:(ⅰ)定义法:取值、作差、变形、定号,其中变形是关键,常用的方法有:通分、配方、因式分解;(ⅱ)图象法;(ⅲ)复合函数的单调性遵循“同增异减”的原则;(ⅳ)导数法.(2)奇偶性:①若f(x)是偶函数,那么f(x)=f(-x);②若f(x)是奇函数,0在其定义域内,则f(0)=0;③奇函数在关于原点对称的区间内有相同的单调性,偶函数在关于原点对称的区间内有相反的单调性;(3)周期性:常见结论有①若y=f(x)对x∈R,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;②若y=f(x)是偶函数,其图象又关于直线x=a对称,则f(x)是周期为2|a|的周期函数;③若y=f(x)是奇函数,其图象又关于直线x=a对称,则f(x)是周期为4|a|的周期函数;④若f(x+a)=-f(x),则y=f(x)是周期为2|a|的周期函数.2.函数的图象(1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.(2)在研究函数性质特别是单调性、值域、零点时,要注意用好其与图象的关系,结合图象研究.3.求函数值域有以下几种常用方法:(1)直接法;(2)配方法;(3)基本不等式法;(4)单调性法;(5)求导法;(6)分离变量法.除了以上方法外,还有数形结合法、判别式法等.4.函数的零点问题(1)函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解热点一函数性质的应用【例1】(1)已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为()A.a<b<cB.a<c<bC.c<a<bD.c<b<a(2)(2016·全国Ⅱ卷)已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则(xi+yi)=()A.0B.mC.2mD.4m解析(1)由f(x)=2|x-m|-1是偶函数可知m=0,所以f(x)=2|x|-1.所以a=f(log0.53)=2|log0.53|-1=2log23-1=2,b=f(log25)=2|log25|-1=2log25-1=4,c=f(0)=2|0|-1=0,所以c

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

创新设计(浙江专用)高考数学二轮复习 教师用书1 专题一 函数与导数、不等式-人教版高三全册数学试题

您可能关注的文档

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群