2017届高考数学二轮复习教师用书2专题二-专题三第1讲三角函数的图象与性质高考定位三角函数的图象与性质是高考考查的重点和热点内容,主要从以下两个方面进行考查:1.三角函数的图象,主要涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查;2.利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以解答题的形式考查.真题感悟1.(2016·全国Ⅱ卷)若将函数y=2sin2x的图象向左平移个单位长度,则平移后图象的对称轴为()A.x=-(k∈Z)B.x=+(k∈Z)C.x=-(k∈Z)D.x=+(k∈Z)解析由题意将函数y=2sin2x的图象向左平移个单位长度后得到函数的解析式为y=2sin,由2x+=kπ+得函数的对称轴为x=+(k∈Z),故选B.答案B2.(2015·安徽卷)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)0,∴φmin=,故f(x)=Asin(2x+).于是f(0)=A,f(2)=Asin(4+),f(-2)=Asin=Asin,又 -<-4<4-<<,其中f(2)=Asin=Asin=Asin,f(-2)=Asin=Asin=Asin.又f(x)在内单调递增,∴f(2)0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为,求θ的最小值.解(1)根据表中已知数据,解得A=5,ω=2,φ=-.数据补全如下表:ωx+φ0π2πxπAsin(ωx+φ)050-50且函数表达式为f(x)=5sin.(2)由(1)知f(x)=5sin,得g(x)=5sin.因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ-=kπ,解得x=+-θ,k∈Z.由于函数y=g(x)的图象关于点成中心对称,令+-θ=,解得θ=-,k∈Z.由θ>0可知,当k=1时,θ取得最小值.探究提高在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x而言的,如果x的系数不是1,就要把这个系数提取后再确...