电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

创新设计(浙江专用)高考数学二轮复习 专题五 解析几何 第2讲 直线与圆锥曲线的位置关系练习-人教版高三全册数学试题VIP免费

创新设计(浙江专用)高考数学二轮复习 专题五 解析几何 第2讲 直线与圆锥曲线的位置关系练习-人教版高三全册数学试题_第1页
1/4
创新设计(浙江专用)高考数学二轮复习 专题五 解析几何 第2讲 直线与圆锥曲线的位置关系练习-人教版高三全册数学试题_第2页
2/4
创新设计(浙江专用)高考数学二轮复习 专题五 解析几何 第2讲 直线与圆锥曲线的位置关系练习-人教版高三全册数学试题_第3页
3/4
专题五解析几何第2讲直线与圆锥曲线的位置关系练习一、选择题1.(2014·全国Ⅰ卷)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若FP=4FQ,则|QF|等于()A.B.C.3D.2解析过点Q作QQ′⊥l交l于点Q′,因为FP=4FQ,所以|PQ|∶|PF|=3∶4,又焦点F到准线l的距离为4,所以|QF|=|QQ′|=3.答案C2.(2015·四川卷)过双曲线x2-=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|等于()A.B.2C.6D.4解析右焦点F(2,0),过F与x轴垂直的直线为x=2,渐近线方程为x2-=0,将x=2代入渐近线方程得y2=12,∴y=±2,∴A(2,2),B(2,-2),∴|AB|=4.答案D3.已知A,B,P是双曲线-=1上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积kPA·kPB=,则该双曲线的离心率为()A.B.C.D.解析设A(x1,y1),P(x2,y2),根据对称性,B(-x1,-y1),因为A,P在双曲线上,所以两式相减,得kPAkPB==,所以e2==,故e=.答案D4.(2014·全国Ⅱ卷)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.解析易知抛物线中p=,焦点F,直线AB的斜率k=,故直线AB的方程为y=,代入抛物线方程y2=3x,整理得x2-x+=0.设A(x1,y1),B(x2,y2),则x1+x2=.由抛物线的定义可得弦长|AB|=x1+x2+p=+=12,结合图象可得O到直线AB的距离d=sin30°=,所以△OAB的面积S=|AB|·d=.答案D5.(2017·湖州一模)已知抛物线y2=4px(p>0)与双曲线-=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为()A.B.+1C.+1D.解析依题意,得F(p,0),因为AF⊥x轴,设A(p,y),y>0,y2=4p2,所以y=2p.所以1A(p,2p).又点A在双曲线上,所以-=1.又因为c=p,所以-=1,化简,得c4-6a2c2+a4=0,即-6+1=0.所以e2=3+2,e=+1.答案B二、填空题6.已知直线l过椭圆8x2+9y2=72的一个焦点,斜率为2,l与椭圆相交于M、N两点,则弦|MN|的长为________.解析由得11x2-18x-9=0.由根与系数的关系,得xM+xN=,xM·xN=-.由弦长公式|MN|=|xM-xN|=·==.答案7.过点M(1,1)作斜率为-的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于________.解析设A(x1,y1),B(x2,y2),则∴+=0,∴=-·. =-,x1+x2=2,y1+y2=2,∴-=-,∴a2=2b2.又 b2=a2-c2,∴a2=2(a2-c2),∴a2=2c2,∴=.答案8.(2017·郑州模拟)已知点A(-2,0),B(2,0),过点A作直线l与以A,B为焦点的椭圆交于M,N两点,线段MN的中点到y轴的距离为,且直线l与圆x2+y2=1相切,则该椭圆的标准方程是________.解析根据题意,知直线l的斜率存在,设直线l的方程为y=k(x+2),①由题意设椭圆方程为+=1(a2>4),②由直线l与圆x2+y2=1相切,得=1,解得k2=.将①代入②,得(a2-3)x2+a2x-a4+4a2=0,设点M的坐标为(x1,y1),点N的坐标为(x2,y2),由根与系数的关系,得x1+x2=-,又线段MN的中点到y轴的距离为,所以|x1+x2|=,即-=-,解得a2=8.所以该椭圆的标准方程为+=1.答案+=1三、解答题9.(2015·全国Ⅰ卷)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(1)当k=0时,分别求C在点M和N处的切线方程;(2)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.解(1)由题设可得M(2,a),N(-2,a),或M(-2,a),N(2,a).又y′=,故y=在x=2处的导数值为,C在点(2,a)处的切线方程为y-a=(x-2),即x-y-a=0.y=在x=-2处的导数值为-,C在点(-2,a)处的切线方程为y-a=-(x+2),即x+y+a=0.2故所求切线方程为x-y-a=0和x+y+a=0.(2)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将y=kx+a代入C的方程得x2-4kx-4a=0.故x1+x2=4k,x1x2=-4a.从而k1+k2=+==.当b=-a时,有k1+k2=0,则直线PM的倾斜角与直线PN的倾斜角互补,故∠OPM=∠OPN,所以点P(0,-a)符合题意.10.如图,椭圆E:+=1(a>b>0)的离心率...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

创新设计(浙江专用)高考数学二轮复习 专题五 解析几何 第2讲 直线与圆锥曲线的位置关系练习-人教版高三全册数学试题

您可能关注的文档

雨丝书吧+ 关注
实名认证
内容提供者

乐于和他人分享知识,从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部