专题五解析几何第1讲圆与圆锥曲线的基本问题练习一、选择题1.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M、N分别是圆C1、C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.5-4B.5-4C.5-3D.5-3解析由条件可知,两圆的圆心均在第一象限,先求|PC1|+|PC2|的最小值,作点C1关于x轴的对称点C1′(2,-3),则(|PC1|+|PC2|)min=|C1′C2|=5.所以(|PM|+|PN|)min=5-4.答案B2.(2015·全国Ⅰ卷)已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点,若MF1·MF2<0,则y0的取值范围是()A.B.C.D.解析由题意知M在双曲线C:-y2=1上,又在x2+y2=3内部,由得y=±,所以-b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则E的方程为()A.+=1B.+=1C.+=1D.+=1解析因为直线AB过点F(3,0)和点(1,-1),所以直线AB的方程为y=(x-3),代入椭圆方程+=1消去y,得x2-a2x+a2-a2b2=0,所以AB的中点的横坐标为=1,即a2=2b2,又a2=b2+c2,所以b=c=3,选D.答案D4.(2016·四川卷)设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为()A.B.C.D.1解析如图,由题可知F,设P点坐标为,显然,当y0<0时,kOM<0;y0>0时,kOM>0,要求kOM最大值,不妨设y0>0.则OM=OF+FM=OF+FP=OF+(OP-OF)=OP+OF=,kOM==≤=,当且仅当y=2p2等号成立.故选C.答案C5.如图,F1,F2分别是双曲线C:-=1(a,b>0)的左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心率是()A.B.C.D.解析不妨设c=1,则直线PQ:y=bx+b,两渐近线为y=±x,因此有交点P,Q,设PQ的中点为N,则点N的坐标为,因为线段PQ的垂直平分线与x轴交于点M,|MF2|=|F1F2|,所以点M的坐标为(3,0),因此有kMN==-,所以3-4a2=b2=1-a2,所以a2=,所以e=.答案B二、填空题6.(2015·浙江卷)已知实数x,y满足x2+y2≤1,则|2x+y-4|+|6-x-3y|的最大值是________.解析因为实数x,y满足x2+y2≤1,则2x+y-4<0,6-x-3y>0,所以|2x+y-4|+|6-x-3y|=4-2x-y+6-x-3y=-3x-4y+10.令z=-3x-4y+10,则3x+4y-10+z=0.当直线3x+4y-10+z=0与圆x2+y2=1相切时,z取最值,故=1,∴z=5或z=15,∴|2x+y-4|+|6-x-3y|的最大值为15.答案157.(2016·浙江卷)设双曲线x2-=1的左、右焦点分别为F1,F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是________.解析如图,由已知可得a=1,b=,c=2,从而|F1F2|=4,由对称性不妨设P在右支上,设|PF2|=m,则|PF1|=m+2a=m+2,由于△PF1F2为锐角三角形,结合实际意义需满足解得-1+<m<3,又|PF1|+|PF2|=2m+2,∴2<2m+2<8.答案(2,8)8.(2016·深圳第二次调研)过抛物线y2=2px(p>0)的焦点F,且倾斜角为的直线与抛物线交于A,B两点,若弦AB的垂直平分线经过点(0,2),则p等于________.解析由题意知直线AB的方程为y=x-,垂直线平分线方程为y=-x+2,联立上面两直线方程得y=1-,x=1+,即AB的中点坐标为,设A,B,则=,∴1-=p,∴p=.答案三、解答题9.(2015·全国Ⅰ卷)已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若OM·ON=12,其中O为坐标原点,求|MN|.解(1)由题设,可知直线l的方程为y=kx+1,因为l与C交于两点,所以<1.解得