电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

创新设计(全国通用)高考数学二轮复习 专题四 立体几何 第2讲 立体几何中的向量方法练习 理-人教版高三全册数学试题VIP免费

创新设计(全国通用)高考数学二轮复习 专题四 立体几何 第2讲 立体几何中的向量方法练习 理-人教版高三全册数学试题_第1页
1/6
创新设计(全国通用)高考数学二轮复习 专题四 立体几何 第2讲 立体几何中的向量方法练习 理-人教版高三全册数学试题_第2页
2/6
创新设计(全国通用)高考数学二轮复习 专题四 立体几何 第2讲 立体几何中的向量方法练习 理-人教版高三全册数学试题_第3页
3/6
专题四立体几何第2讲立体几何中的向量方法练习理1.(2016·山东卷)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(1)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(2)已知EF=FB=AC=2,AB=BC,求二面角F-BC-A的余弦值.(1)证明设FC中点为I,连接GI,HI,在△CEF中,因为点G是CE的中点,所以GI∥EF.又EF∥OB,所以GI∥OB.在△CFB中,因为H是FB的中点,所以HI∥BC,又HI∩GI=I,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.(2)解连接OO′,则OO′⊥平面ABC.又AB=BC,且AC是圆O的直径,所以BO⊥AC.以O为坐标原点,建立如图所示的空间直角坐标系O-xyz.由题意得B(0,2,0),C(-2,0,0).过点F作FM垂直OB于点M,所以FM==3,可得F(0,,3).故BC=(-2,-2,0),BF=(0,-,3).设m=(x,y,z)是平面BCF的一个法向量.由可得可得平面BCF的一个法向量m=,因为平面ABC的一个法向量n=(0,0,1),所以cos〈m,n〉==.所以二面角F-BC-A的余弦值为.2.(2015·山东卷)如图,在三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.(1)证明法一连接DG,CD,设CD∩GF=O,连接OH,在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则O为CD的中点,又H为BC的中点,所以OH∥BD,又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.法二在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形BHFE为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)解设AB=2,则CF=1.在三棱台DEF-ABC中,G为AC的中点,由DF=AC=GC,可得四边形DGCF为平行四边形,因此DG∥FC,又FC⊥平面ABC,所以DG⊥平面ABC.在△ABC中,由AB⊥BC,∠BAC=45°,G是AC中点.所以AB=BC,GB⊥GC,因此GB,GC,GD两两垂直.以G为坐标原点,建立如图所示的空间直角坐标系G-xyz.所以G(0,0,0),B(,0,0),C(0,,0),D(0,0,1).可得H,F(0,,1),故GH=,GF=(0,,1).设n=(x,y,z)是平面FGH的一个法向量,则由可得可得平面FGH的一个法向量n=(1,-1,).因为GB是平面ACFD的一个法向量,GB=(,0,0).所以cos〈GB,n〉===.所以平面FGH与平面ACFD所成角(锐角)的大小为60°.3.(2016·四川卷)如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.E为边AD的中点,异面直线PA与CD所成的角为90°.(1)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.解(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED.所以四边形BCDE是平行四边形.从而CM∥EB.又EB⊂平面PBE,CM⊄平面PBE.所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(2)法一由已知,CD⊥PA,CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.于是CD⊥PD.从而∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.设BC=1,则在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A为原点,以AD,AP的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0).所以PE=(1,0,-2),EC=(1,1,0),AP=(0,0,2).设平面PCE的法向量为n=(x,y,z).由得设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为α,则sinα===.所以直线PA与平面PCE所成角的正弦值为.法二由已知,CD⊥PA,CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.从而CD⊥PD.所以∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.设BC=1,则在Rt△PAD中,PA=AD=2.过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知PA⊥平面ABCD,从而PA⊥CE.且PA∩AH=A,于是CE⊥平面PAH.又CE⊂平面PCE,所以平面PC...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

创新设计(全国通用)高考数学二轮复习 专题四 立体几何 第2讲 立体几何中的向量方法练习 理-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部