2015-2016学年辽宁省实验中学分校高一(上)期末数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={2015,2016},非空集合B满足A∪B={2015,2016},则满足条件的集合B的个数是()A.1B.2C.3D.42.函数y=的定义域是()A.(1,2]B.(1,2)C.(2,+∞)D.(﹣∞,2)3.已知空间中两点A(1,2,3),B(4,2,a),且|AB|=,则a=()A.1或2B.1或4C.0或2D.2或44.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.56+12B.60+12C.30+6D.28+65.直线l将圆x2+y2﹣2x﹣4y=0平分,且与直线﹣=1平行,则直线l的方程是()A.2x﹣y﹣4=0B.x+2y﹣3=0C.2x﹣y=0D.x﹣2y+3=06.设a,b,c均为正数,且2a=,,,则()A.a<b<cB.c<b<aC.c<a<bD.b<a<c7.设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:①若α∥β,α∥γ,则β∥γ②若α⊥β,m∥α,则m⊥β③若m⊥α,m∥β,则α⊥β④若m∥n,n⊂α,则m∥α其中真命题的序号是()A.①④B.②③C.②④D.①③8.函数f(x)的定义域为(﹣∞,1)∪(1,+∞),且f(x+1)为奇函数,当x>1时,f(x)=2x2﹣12x+16,则直线y=2与函数f(x)图象的所有交点的横坐标之和是()A.1B.2C.4D.59.若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3C.D.410.过点(3,1)作圆(x﹣1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为()A.2x+y﹣3=0B.2x﹣y﹣3=0C.4x﹣y﹣3=0D.4x+y﹣3=011.设f(x)是定义在R上的增函数,且对任意x,都有f(﹣x)+f(x)=0恒成立,如果实数m,n满足不等式f(m2﹣6m+21)+f(n2﹣8n)<0,那么m2+n2的取值范围是()A.(9,49)B.(13,49)C.(9,25)D.(3,7)12.将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()A.B.2+C.4+D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.函数y=loga(x﹣1)+8(a>0且a≠1)的图象恒过定点P,P在幂函数f(x)的图象上,则f(3)=.14.直线(2m+1)x+(3m﹣2)y+1﹣5m=0被圆x2+y2=16截得弦长的最小值为.15.已知函数f(x)=有三个不同的零点,则实数a的取值范围是.16.如图,正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=,则下列结论中正确的序号是.①AC⊥BE②EF∥平面ABCD③三棱锥A﹣BEF的体积为定值④△AEF的面积与△BEF的面积相等.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设U=R,A={x|1≤x≤3},B={x|2<x<4},C={x|a≤x≤a+1},a为实数,(1)分别求A∩B,A∪(∁UB);(2)若B∩C=C,求a的取值范围.18.(12分)已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.求:(1)顶点C的坐标;(2)直线BC的方程.19.(12分)已知如图,在直三棱柱ABC﹣A1B1C1中,AA1=AC,且AB⊥AC,M是面CC1的中点,N是BC的中点,点P在直线A1B1上.(Ⅰ)若P为A1B1中点,求证:NP∥平面ACC1A1;(Ⅱ)证明:PN⊥AM.20.(12分)如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB.点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点.(Ⅰ)若∠PAB=30°,求以MN为直径的圆方程;(Ⅱ)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点.21.(12分)如图甲,⊙O的直径AB=2,圆上两点C,D在直径AB的两侧,使∠CAB=,∠DAB=.沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,E为AO的中点.P为AC的动点,根据图乙解答下列各题:(1)求三棱锥D﹣ABC的体积.(2)求证:不论点P在何位置,都有DE⊥BP;(3)在BD弧上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.22.(12分)设函数,其中a为常数(1)当f(2)=f(1)+2时,求a的值;(2)当x∈B.(1,2)C.(2,+∞)D.(﹣∞,2)【考点】函数的定义域及其求法;对数函数的定义域.【专题...