电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

【金版新学案】高考数学总复习 课时作业23 正弦定理和余弦定理的应用试题 文 新人教A版VIP免费

【金版新学案】高考数学总复习 课时作业23 正弦定理和余弦定理的应用试题 文 新人教A版_第1页
1/6
【金版新学案】高考数学总复习 课时作业23 正弦定理和余弦定理的应用试题 文 新人教A版_第2页
2/6
【金版新学案】高考数学总复习 课时作业23 正弦定理和余弦定理的应用试题 文 新人教A版_第3页
3/6
课时作业(二十三)正弦定理和余弦定理的应用A级1.如果在测量中,某渠道斜坡坡度为,设α为坡角,那么cosα等于()A.B.C.D.2.在某次测量中,在A处测得同一平面方向的B点的仰角是50°,且到A的距离为2,C点的俯角为70°,且到A的距离为3,则B、C间的距离为()A.B.C.D.3.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是()A.50mB.100mC.120mD.150m4.如图,设A、B两点在河的两岸,一测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为()A.50mB.50mC.25mD.m5.一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为()A.海里/小时B.34海里/小时C.海里/小时D.34海里/小时6.已知A、B两地的距离为10km,B、C两地的距离为20km,现测得∠ABC=120°,则A、C两地的距离为________km.7.如图,一艘船上午9∶30在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10∶00到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距8nmile.此船的航速是________nmile/h.8.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距1________m.9.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是______米.10.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,升旗手应以多大的速度匀速升旗?11.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40m,求电视塔的高度.2B级1.海事救护船A在基地的北偏东60°,与基地相距100海里,渔船B被困海面,已知B距离基地100海里,而且在救护船A正西方,则渔船B与救护船A的距离是()A.100海里B.200海里C.100海里或200海里D.100海里2.如图,货轮在海上以35nmile/h的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为152°的方向航行.为了确定船位,在B点处观测到灯塔A的方位角为122°.半小时后,货轮到达C点处,观测到灯塔A的方位角为32°,则此时货轮与灯塔之间的距离为________nmile.3.如图,一船在海上由西向东航行,在A处测得某岛M的方位角为北偏东α角,前进4km后在B处测得该岛的方位角为北偏东β角.3已知该岛周围3.5km范围内有暗礁,现该船继续东行.(1)若α=2β=60°,问该船有无触礁危险?如果没有,请说明理由;如果有,那么该船自B处向东航行多少距离会有触礁危险?(2)当α与β满足什么条件时,该船没有触礁危险?详解答案课时作业(二十三)A级1.B因为tanα=,则sinα=cosα,代入sin2α+cos2α=1得:cosα=.2.D因∠BAC=120°,AB=2,AC=3.∴BC2=AB2+AC2-2AB·ACcos∠BAC=4+9-2×2×3×cos120°=19.∴BC=.3.A设水柱高度是hm,水柱底端为C,则在△ABC中,A=60°,AC=h,AB=100,BC=h,根据余弦定理得,(h)2=h2+1002-2·h·100·cos60°,即h2+50h-5000=0,即(h-50)(h+100)=0,即h=50,故水柱的高度是50m.4.A∠B=180°-45°-105°=30°.在△ABC中,由=,得AB=100×=50m.5.A如图所示,在△PMN中,=,∴MN==34,∴v==(海里/小时).6.解析:如图所示,由余弦定理可得:AC2=100+400-2×10×20×cos120°=700,∴AC=10(km).答案:107.解析:设航速为vnmile/h在△ABS中,AB=v,BS=8,∠BSA=45°,由正弦定理得:=,∴v=...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

【金版新学案】高考数学总复习 课时作业23 正弦定理和余弦定理的应用试题 文 新人教A版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部