第4讲数学归纳法基础巩固1.用数学归纳法证明1+++…+1)时,第一步应验证不等式()A.1+<2B.1++<2C.1++<3D.1+++<3【答案】B【解析】 n∈N*,n>1,∴n取的第一个自然数为2,左端分母最大的项为=.故选B.2.如果命题p(n)对n=k成立,则它对n=k+2也成立.若p(n)对n=2成立,则下列结论正确的是()A.p(n)对所有正整数n都成立B.p(n)对所有正偶数n都成立C.p(n)对所有正奇数n都成立D.p(n)对所有自然数n都成立【答案】B【解析】若n=2时,p(n)成立,则n=4,6,8,…,时p(n)成立.3.用数学归纳法证明(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1)时,从“k到k+1”,左边需增乘的代数式是()A.2k+1B.C.2(2k+1)D.【答案】C【解析】当n=k时,左边=(k+1)(k+2)…(k+k),当n=k+1时,左边=[(k+1)+1][(k+1)+2]…[(k+1)+(k+1)]=(k+2)(k+3)…(k+k)(2k+1)(2k+2)=(k+1)(k+2)…(k+k)·2(2k+1).故增乘的代数式应为2(2k+1).4.某个命题与自然数n有关,若n=k(k∈N*)时,该命题成立,那么可推得n=k+1时该命题也成立.现在已知当n=5时,该命题不成立,那么可推得()A.当n=6时该命题不成立B.当n=6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立【答案】C【解析】“若n=5时命题不成立,则n=4时命题也不成立”的逆否命题为“若n=4时命题成立,则n=5时命题也成立”.而它的逆否命题为真命题.故结合题意可知应选C.5.已知f(n)=+++…+,则()A.f(n)中共有n项,当n=2时,f(2)=+B.f(n)中共有n+1项,当n=2时,f(2)=++C.f(n)中共有n2-n项,当n=2时,f(2)=+D.f(n)中共有n2-n+1项,当n=2时,f(2)=++【答案】D【解析】总项数为n2-n+1.6.若k棱柱过侧棱有f(k)个对角面,则k+1棱柱过侧棱的对角面的个数f(k+1)为()1A.f(k)+k-1B.f(k)+kC.f(k)+k+1D.f(k)+k-2【答案】A【解析】 由k棱柱到k+1棱柱,底面对角线增加了k-2+1=k-1条,∴增加了k-1个对角面.7.下列代数式(其中k∈N*)能被9整除的是()A.6+6·7kB.2+7k-1C.2(2+7k+1)D.3(2+7k)【答案】D【解析】(1)当k=1时,显然只有3(2+7k)能被9整除.(2)假设当k=n(n∈N*)时,命题成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36,这就是说,k=n+1时命题也成立.由(1)(2)可知,3(2+7n)能被9整除对任何k∈N*都成立.8.设数列{an}的前n项和为Sn,且对任意的自然数n都有:(Sn-1)2=anSn.通过计算S1,S2,S3,猜想Sn=.【答案】【解析】由(S1-1)2=,得S1=;由(S2-1)2=(S2-S1)S2,得S2=;由(S3-1)2=(S3-S2)S3,得S3=.猜想:Sn=.9.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=;当n>4时,f(n)=(用n表示).【答案】5(n+1)(n-2)【解析】结合题意分析可知f(3)=2,f(4)=5,f(5)=9,每增加一条直线,交点增加的个数等于原来直线的条数.由于f(3)=2,f(4)-f(3)=3,f(5)-f(4)=4,…f(n)-f(n-1)=n-1.累加,得f(n)=2+3+4+…+(n-1)=(n-2).故f(n)=(n+1)(n-2).10.是否存在常数a,b使等式++…+=对于一切n∈N*都成立.【解】若存在常数a,b使等式成立,将n=1,n=2代入上式,有即有++…+=.对于n为所有正整数是否成立,再用数学归纳法证明.证明:(1)当n=1时,左边==,右边==,此时等式成立.(2)假设当n=k(k∈N*)时成立,即++…+=,则当n=k+1时,++…++=+=·=·=·2==,这就是说,当n=k+1时等式也成立.根据(1)和(2)可知等式对任何n∈N*都成立.11.已知函数f(x)=x3-x,数列{an}满足条件:a1≥1,an+1≥f'(an+1).试比较+++…+与1的大小,并说明理由.【解】 f'(x)=x2-1,an+1≥f'(an+1),∴an+1≥(an+1)2-1. 函数g(x)=(x+1)2-1=x2+2x在区间[-1,+∞)上单调递增,∴由a1≥1,得a2≥(a1+1)2-1≥22-1,进而得a3≥(a2+1)2-1≥24-1>23-1.由此猜想:an≥2n-1.下面用数学归纳法证明这个猜想:①当n=1时,a1≥21-1=1,结论成立;②假设当n=k(k≥1且k∈N*)时结论成立,即ak≥2k-1,则当n=k+1时,由g(x)=(x+1)2-1在区间[-1,+∞)上单调递增知ak+1≥(ak+1)2-1≥22k-1≥2k+1-1,即n=k+1时,结论也成立.由①②知对任意n∈N*,都有an≥2n-1.即1+an≥2n.因此.故+++…++++…+=1-<1.12.已知数列{an},其中a2=6且=n.(1)求a1,a3,a4;(2)求数列{an}的通项公式.【解】(1) a2=6,∴=1,=2,=3,解得a1=1,a3=15,a4=28.(2)由上面的a1,a2,a3,a4的值可以猜想an=n(2n-1).下面用数学归纳法加...