4.2平面向量的基本定理及坐标表示一、知识点1.平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模:设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=.(2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1),||=.3.平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中b≠0.a∥b⇔x1y2-x2y1=0.二、考点分析考点一平面向量的坐标运算1.(2013·北京高考)向量a,b,c在正方形网格中的位置如图所示.若c=λa+μb(λ,μ∈R),则=________.考点二平面向量基本定理及其应用2.(2014·济南调研)如图,在△ABC中,=,P是BN上的一点,若=m+,则实数m的值为________.考点三平面向量共线的坐标表示3.平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).(1)求满足a=mb+nc的实数m,n;(2)若(a+kc)∥(2b-a),求实数k;三、例题巩固1.如图,在平行四边形ABCD中,E为DC边的中点,且=a,=b,则=()A.b-aB.b+aC.a+bD.a-b2.(2013·大连沙河口模拟)非零不共线向量、,且2=x+y,若=λ(λ∈R),则点Q(x,y)的轨迹方程是()A.x+y-2=0B.2x+y-1=0C.x+2y-2=0D.2x+y-2=03.(2014·朝阳一模)在△ABC中,M为边BC上任意一点,N为AM中点,=λ+μ,则λ+μ的值为()A.B.C.D.14.(2013·辽宁高考)已知点A(1,3),B(4,-1),则与向量同方向的单位向量为()A.B.C.D.5.已知△ABC中,点D在BC边上,且=2,=r+s,则r+s的值是()A.B.C.-3D.06.(2014·江苏五市联考)已知向量a=,b=(x,1),其中x>0,若(a-2b)∥(2a+b),则x的值为()A.4B.8C.0D.27.若α,β是一组基底,向量γ=xα+yβ(x,y∈R),则称(x,y)为向量γ在基底α,β下的坐标,现已知向量a在基底p=(1,-1),q=(2,1)下的坐标为(-2,2),则a在另一组基底m=(-1,1),n=(1,2)下的坐标为()A.(2,0)B.(0,-2)C.(-2,0)D.(0,2)8.如图,在平行四边形ABCD中,O是对角线AC,BD的交点,N是线段OD的中点,AN的延长线与CD交于点E,则下列说法错误的是()A.=+B.=-C.=+D.=+9.在△ABC中,点P在BC上,且=2,点Q是AC的中点,若=(4,3),=(1,5),则=________.10.(2014·九江模拟)P={a|a=(-1,1)+m(1,2),m∈R},Q={b|b=(1,-2)+n(2,3),n∈R}是两个向量集合,则P∩Q等于________.11.(2013·保定调研)已知两点A(1,0),B(1,1),O为坐标原点,点C在第二象限,且∠AOC=135°,设=-+λ(λ∈R),则λ的值为________.12.(2014·湖南五市联合检测)设向量a=(a1,a2),b=(b1,b2),定义一种向量积a⊗b=(a1b1,a2b2),已知向量m=,n=,点P(x,y)在y=sinx的图像上运动.Q是函数y=f(x)图像上的点,且满足=m⊗+n(其中O为坐标原点),则函数y=f(x)的值域是________.