(本栏目内容,在学生用书中以活页形式分册装订!)一、选择题1.数列1,3,5,7…,,(2n-1)…+,的前n项和Sn的值等于()A.n2+1-B.2n2-n+1-C.n2+1-D.n2-n+1-解析:该数列的通项公式为an=(2n-1)+,则Sn=[1+3+5…++(2n-1)]+=n2+1-.故选A.答案:A2.数列1,1+2,1+2+4…,,1+2+22…++2n-1…,的前n项和Sn>1020,那么n的最小值是()A.7B.8C.9D.10解析:∵1+2+22…++2n-1==2n-1,∴Sn=(2+22…++2n)-n=-n=2n+1-2-n.若Sn>1020,则2n+1-2-n>1020.∴n≥10.答案:D3.1-4+9-16…++(-1)n+1n2等于()A.B.-C.(-1)n+1D.以上答案均不对解析:当n为偶数时,1-4+9-16…++(-1)n+1n2=-3-7…--(2n-1)=-=-;当n为奇数时,1-4+9-16…++(-1)n+1n2=-3-7…--[2(n-1)-1]+n2=-+n2=,综上可得,1-4+9-16…++(-1)n+1n2=(-1)n+1.答案:C4.若数列{an}的前n项和为Sn,且满足Sn=an-3,则数列{an}的前n项和Sn等于()A.3n+1-3B.3n-3C.3n+1+3D.3n+3解析:∵Sn=an-3,∴Sn+1=an+1-3,两式相减得:Sn+1-Sn=(an+1-an).即an+1=(an+1-an),∴=3.又∵S1=a1-3,即a1=a1-3,∴a1=6.∴an=a1·qn-1=6×3n-1=2×3n.∴Sn=an-3=×2×3n-3=3n+1-3,故应选A.答案:A5.已知函数f(x)=x2+bx的图象在点A(1,f(1))处的切线的斜率为3,数列的前n项和为Sn,则S2010的值为()A.B.C.D.解析:∵f′(x)=2x+b∴f′(1)=2+b=3,∴b=1,∴f(x)=x2+x,∴==-,∴S2010=1…-+-++-=1-=.答案:D6.已知数列{an}的前n项和Sn=n2-6n,则{|an|}的前n项和Tn=()A.6n-n2B.n2-6n+18C.D.解析:由Sn=n2-6n得{an}是等差数列,且首项为-5,公差为2.∴an=-5+(n-1)×2=2n-7,∴n≤3时,an<0,n>3时an>0,∴Tn=答案:C二、填空题7.已知f(n)=若an=f(n)+f(n+1),则a1+a2…++a2008=________.解析:当n为奇数时,an=f(n)+f(n+1)=n-n-1=-1.当n为偶数时,an=-n+n+1=1.∴a1+a2…++a2008=0.答案:08.在等差数列{an}中,a3+a21=4,则其前23项的和为________.解析:S23====46.答案:469.对于数列{an},定义数列{an+1-an}为数列{an}“”的差数列,若a1=2,{an}“的差数”列的通项为2n,则数列{an}的前n项和Sn=________.解析:∵an+1-an=2n,∴an=(an-an-1)+(an-1-an-2)…++(a2-a1)+a1=2n-1+2n-2…++22+2+2=+2=2n-2+2=2n.∴Sn==2n+1-2.答案:2n+1-2三、解答题10.等差数列{an}中,a1=3,前n项和为Sn,等比数列{bn}各项均为正数,b1=1,且b2+S2=12,{bn}的公比q=.(1)求an与bn;(2)…求+++.解析:(1)由已知可得,解得q=3,a2=6或q=-4(舍去),a2=13(舍去),∴an=3+(n-1)×3=3n,bn=3n-1.(2)∵Sn=,∴==,∴…+++===.11.在数列{an}中,已知a1=-1,且an+1=2an+3n-4(n∈N*).(1)求证:数列{an+1-an+3}是等比数列;(2)求数列{an}的通项公式及前n项和Sn.【解析方法代码108001066】解析:(1)证明:令bn=an+1-an+3,则bn+1=an+2-an+1+3=2an+1+3(n+1)-4-2an-3n+4+3=2(an+1-an+3)=2bn,即bn+1=2bn.由已知得a2=-3,于是b1=a2-a1+3=1≠0.所以数列{an+1-an+3}是以1为首项,2为公比的等比数列.(2)由(1)可知bn=an+1-an+3=2n-1,即2an+3n-4-an+3=2n-1,∴an=2n-1-3n+1(n∈N*).于是,Sn=(1+2+22…++2n-1)-3(1+2+3…++n)+n=-3+n=2n--1.12.(·北京宣武高三期中)已知数列{an}的前n项和为Sn=3n,数列{bn}满足b1=-1,bn+1=bn+(2n-1)(n∈N*).(1)求数列{an}的通项公式an;(2)求数列{bn}的通项公式bn;(3)若cn=,求数列{cn}的前n项和Tn.【解析方法代码108001067】解析:(1)∵Sn=3n,∴Sn-1=3n-1(n≥2),∴an=Sn-Sn-1=3n-3n-1=2×3n-1(n≥2).当n=1时,2×31-1=2≠S1=a1=3,∴an=(2)∵bn+1=bn+(2n-1),∴b2-b1=1,b3-b2=3,b4-b3=5…,,bn-bn-1=2n-3.以上各式相加得bn-b1=1+3+5…++(2n-3)==(n-1)2.∵b1=-1,∴bn=n2-2n.(3)由题意得cn=当n≥2时,Tn=-3+2×0×31+2×1×32+2×2×33…++2(n-2)×3n-1,∴3Tn=-9+2×0×32+2×1×33+2×2×34…++2(n-2)×3n,相减得-2Tn=6+2×32+2×33…++2×3n-1-2(n-2)×3n.∴Tn=(n-2)×3n-(3+32+33…++3n-1=(n-2)×3n-=.∴Tn=∴Tn=(n∈N*).