学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式.学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式.79×13-×6+×27979计算:解:原式=×(13-6+2)=×9=77979问:你是用什么方法计算的?这个式子的各项有相同的因数吗?答:可用乘法的分配律的逆运算进行计算,这个式子的各项的相同因数是79多项式ab+ac中,各项有相同的因式吗?多项式x2+4x呢?多项式mb2+nb–b呢?答:多项式ab+ac有相同的因式a,多项式x2+4x有相同的因式x,多项式mb2+nb–b有相同的因式b。结论:多项式中各项都含有的相同因式,叫做这个多项式各项的公因式.多项式2xy+6xy中各项的公因式是什么?你认为一个多项式的公因式是什么?223结论:(1)各项系数是整数,系数的最大公约数是公因式的系数;(2)各项都含有的字母的最低次幂的积是公因式的字母部分;(3)公因式的系数与公因式字母部分的积是这个多项式的公因式.将以下多项式写成几个因式的乘积的形式:(1)ab+ac(2)x2+4x(3)mb2+nb–b如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.解:(1)ab+ac=a(b+c)(2)x2+4x=x(x+4)(3)mb2+nb–b=b(mb+n-1)将下列多项式进行分解因式:(1)3x+6(2)7x2–21x(3)8a3b2–12ab3c+ab(4)–24x3–12x2+28x提取公因式的步骤是:(1)找公因式;(2)提公因式.从上题的解答中,你能归纳出提公因式的步骤吗?解:(1)3x+6=3(x+2)(2)7x2–21x=7x(x–3)(3)8a3b2–12ab3c+ab=ab(8a2b–12b2c+1)(4)–24x3–12x2+28x=–4x(6x2+3x–7)1、找出下列各多项式的公因式:(1)4x+8y(2)am+an(3)48mn–24mn(4)ab–2ab+ab32222、将下列多项式进行分解因式:(1)8x–72(2)a2b–5ab(3)4m2–8m3(4)a2b–2ab3+ab(5)–48mn–24m2n(6)–2x2y+4xy3–2xy从今天的课程中,你学到了哪些知识?你认为提公因式法与单项式乘多项式有什么关系?