§5.3解三角形考点一正弦、余弦定理1.(课标Ⅰ,16,5分)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA-sinB)=(c-b)sinC,则△ABC面积的最大值为.答案2.(广东,12,5分)在△ABC中,角A,B,C所对应的边分别为a,b,c.已知bcosC+ccosB=2b,则=.答案23.(福建,12,4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于.答案24.(天津,12,5分)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知b-c=a,2sinB=3sinC,则cosA的值为.答案-5.(江苏,14,5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.答案6.(辽宁,17,12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c.已知·=2,cosB=,b=3.求:(1)a和c的值;(2)cos(B-C)的值.解析(1)由·=2得c·acosB=2,又cosB=,所以ac=6.由余弦定理,得a2+c2=b2+2accosB.又b=3,所以a2+c2=9+2×2=13.解得a=2,c=3或a=3,c=2.因a>c,所以a=3,c=2.(2)在△ABC中,sinB===,由正弦定理,得sinC=sinB=×=.因a=b>c,所以C为锐角,因此cosC===.于是cos(B-C)=cosBcosC+sinBsinC=×+×=.7.(湖南,18,12分)如图,在平面四边形ABCD中,AD=1,CD=2,AC=.(1)求cos∠CAD的值;(2)若cos∠BAD=-,sin∠CBA=,求BC的长.解析(1)在△ADC中,由余弦定理,得cos∠CAD===.(2)设∠BAC=α,则α=∠BAD-∠CAD.因为cos∠CAD=,cos∠BAD=-,所以sin∠CAD===,sin∠BAD===.于是sinα=sin(∠BAD-∠CAD)=sin∠BADcos∠CAD-cos∠BADsin∠CAD=×-×=.在△ABC中,由正弦定理,得=,故BC===3.考点二解三角形及其综合应用8.(课标Ⅱ,4,5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1答案B9.(江西,4,5分)在△ABC中,内角A,B,C所对的边分别是a,b,c.若c2=(a-b)2+6,C=,则△ABC的面积是()A.3B.C.D.3答案C10.(重庆,10,5分)已知△ABC的内角A,B,C满足sin2A+sin(A-B+C)=sin(C-A-B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,则下列不等式一定成立的是()A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24答案A11.(山东,12,5分)在△ABC中,已知·=tanA,当A=时,△ABC的面积为.答案12.(北京,15,13分)如图,在△ABC中,∠B=,AB=8,点D在BC边上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.解析(1)在△ADC中,因为cos∠ADC=,所以sin∠ADC=.所以sin∠BAD=sin(∠ADC-∠B)=sin∠ADCcosB-cos∠ADCsinB=×-×=.(2)在△ABD中,由正弦定理得BD===3.在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BC·cosB=82+52-2×8×5×=49.所以AC=7.13.(陕西,16,12分)△ABC的内角A,B,C所对的边分别为a,b,c.(1)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);(2)若a,b,c成等比数列,求cosB的最小值.解析(1)∵a,b,c成等差数列,∴a+c=2b.由正弦定理得sinA+sinC=2sinB.∵sinB=sin[π-(A+C)]=sin(A+C),∴sinA+sinC=2sin(A+C).(2)∵a,b,c成等比数列,∴b2=ac.由余弦定理得cosB==≥=,当且仅当a=c时等号成立.∴cosB的最小值为.14.(安徽,16,12分)设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,A=2B.(1)求a的值;(2)求sin的值.解析(1)因为A=2B,所以sinA=sin2B=2sinBcosB.由正、余弦定理得a=2b·.因为b=3,c=1,所以a2=12,a=2.(2)由余弦定理得cosA===-.由于0