10.3抛物线及其性质考点一抛物线的定义和标准方程1.(课标Ⅰ,10,5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0=()A.1B.2C.4D.8答案A2.(湖南,14,5分)平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x=-1的距离相等.若机器人接触不到过点P(-1,0)且斜率为k的直线,则k的取值范围是.答案(-∞,-1)∪(1,+∞)3.(福建,21,12分)已知曲线Γ上的点到点F(0,1)的距离比它到直线y=-3的距离小2.(1)求曲线Γ的方程;(2)曲线Γ在点P处的切线l与x轴交于点A,直线y=3分别与直线l及y轴交于点M,N.以MN为直径作圆C,过点A作圆C的切线,切点为B.试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.解析(1)解法一:设S(x,y)为曲线Γ上任意一点,依题意,点S到F(0,1)的距离与它到直线y=-1的距离相等,所以曲线Γ是以点F(0,1)为焦点、直线y=-1为准线的抛物线,所以曲线Γ的方程为x2=4y.解法二:设S(x,y)为曲线Γ上任意一点,则|y-(-3)|-=2,依题意,知点S(x,y)只能在直线y=-3的上方,所以y>-3,所以=y+1,化简得,曲线Γ的方程为x2=4y.(2)当点P在曲线Γ上运动时,线段AB的长度不变.证明如下:由(1)知抛物线Γ的方程为y=x2,设P(x0,y0)(x0≠0),则y0=,由y'=x,得切线l的斜率k=y'=x0,所以切线l的方程为y-y0=x0(x-x0),即y=x0x-.由得A.由得M.又N(0,3),所以圆心C,半径r=|MN|=,|AB|===.所以点P在曲线Γ上运动时,线段AB的长度不变.考点二抛物线的性质4.(安徽,3,5分)抛物线y=x2的准线方程是()A.y=-1B.y=-2C.x=-1D.x=-2答案A5.(课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=()A.B.6C.12D.7答案C6.(辽宁,8,5分)已知点A(-2,3)在抛物线C:y2=2px的准线上,记C的焦点为F,则直线AF的斜率为()A.-B.-1C.-D.-答案C7.(四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.答案B8.(陕西,11,5分)抛物线y2=4x的准线方程为.答案x=-19.(浙江,22,14分)已知△ABP的三个顶点都在抛物线C:x2=4y上,F为抛物线C的焦点,点M为AB的中点,=3.(1)若||=3,求点M的坐标;(2)求△ABP面积的最大值.解析(1)由题意知焦点F(0,1),准线方程为y=-1.设P(x0,y0),由抛物线定义知|PF|=y0+1,得到y0=2,所以P(2,2)或P(-2,2).由=3,分别得M或M.(2)设直线AB的方程为y=kx+m,点A(x1,y1),B(x2,y2),P(x0,y0).由得x2-4kx-4m=0,于是Δ=16k2+16m>0,x1+x2=4k,x1x2=-4m,所以AB中点M的坐标为(2k,2k2+m).由=3,得(-x0,1-y0)=3(2k,2k2+m-1),所以由=4y0得k2=-m+.由Δ>0,k2≥0,得-f,所以,当m=时,f(m)取到最大值,此时k=±.所以,△ABP面积的最大值为.