电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(新课标版)高考数学真题分类汇编 10.4 直线与圆锥曲线的位置关系 文VIP免费

(新课标版)高考数学真题分类汇编 10.4 直线与圆锥曲线的位置关系 文_第1页
1/3
(新课标版)高考数学真题分类汇编 10.4 直线与圆锥曲线的位置关系 文_第2页
2/3
(新课标版)高考数学真题分类汇编 10.4 直线与圆锥曲线的位置关系 文_第3页
3/3
10.4直线与圆锥曲线的位置关系考点直线与圆锥曲线的位置关系1.(辽宁,20,12分)圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图).(1)求点P的坐标;(2)焦点在x轴上的椭圆C过点P,且与直线l:y=x+交于A,B两点.若△PAB的面积为2,求C的标准方程.解析(1)设切点坐标为(x0,y0)(x0>0,y0>0),则切线斜率为-,切线方程为y-y0=-(x-x0),即x0x+y0y=4.此时,两个坐标轴的正半轴与切线围成的三角形面积为S=··=,由+=4≥2x0y0知当且仅当x0=y0=时x0y0有最大值,即S有最小值,因此点P的坐标为(,).(2)设C的标准方程为+=1(a>b>0),点A(x1,y1),B(x2,y2).由点P在C上知+=1,并由得b2x2+4x+6-2b2=0,又x1,x2是方程的根,因此由y1=x1+,y2=x2+,得|AB|=|x1-x2|=·.由点P到直线l的距离为及S△PAB=×|AB|=2得b4-9b2+18=0,解得b2=6或3,因此b2=6,a2=3(舍)或b2=3,a2=6,从而所求C的方程为+=1.2.(陕西,20,13分)已知椭圆+=1(a>b>0)经过点(0,),离心率为,左,右焦点分别为F1(-c,0),F2(c,0).(1)求椭圆的方程;(2)若直线l:y=-x+m与椭圆交于A,B两点,与以F1F2为直径的圆交于C,D两点,且满足=,求直线l的方程.解析(1)由题设知解得a=2,b=,c=1,∴椭圆的方程为+=1.(2)由(1)知,以F1F2为直径的圆的方程为x2+y2=1,∴圆心到直线l的距离d=,由d<1得|m|<.(*)∴|CD|=2=2=.设A(x1,y1),B(x2,y2),由得x2-mx+m2-3=0,由根与系数关系可得x1+x2=m,x1x2=m2-3.∴|AB|==.由=得=1,解得m=±,满足(*).∴直线l的方程为y=-x+或y=-x-.3.(湖北,22,14分)在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(-2,1).求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.解析(1)设点M(x,y),依题意得|MF|=|x|+1,即=|x|+1,化简整理得y2=2(|x|+x).故点M的轨迹C的方程为y2=(2)在点M的轨迹C中,记C1:y2=4x,C2:y=0(x<0),依题意,可设直线l的方程为y-1=k(x+2).由方程组可得ky2-4y+4(2k+1)=0.①(i)当k=0时,y=1.把y=1代入轨迹C的方程,得x=.故此时直线l:y=1与轨迹C恰好有一个公共点.(ii)当k≠0时,方程①的判别式为Δ=-16(2k2+k-1).②设直线l与x轴的交点为(x0,0),则由y-1=k(x+2),令y=0,得x0=-.③若由②③解得k<-1或k>,即当k∈(-∞,-1)∪时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.若或由②③解得k∈或-≤k<0,即当k∈时,直线l与C1只有一个公共点,与C2有一个公共点.当k∈时,直线l与C1有两个公共点,与C2没有公共点.故当k∈∪时,直线l与轨迹C恰好有两个公共点.若由②③解得-1b>0)的离心率为,直线y=x被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2.证明存在常数λ使得k1=λk2,并求出λ的值;(ii)求△OMN面积的最大值.解析(1)由题意知=,可得a2=4b2,椭圆C的方程可简化为x2+4y2=a2.将y=x代入可得x=±,因此×=,可得a=2.因此b=1,所以椭圆C的方程为+y2=1.(2)(i)设A(x1,y1)(x1y1≠0),D(x2,y2),则B(-x1,-y1),因为直线AB的斜率kAB=,又AB⊥AD,所以直线AD的斜率k=-.设直线AD的方程为y=kx+m,由题意知k≠0,m≠0.由可得(1+4k2)x2+8mkx+4m2-4=0.所以x1+x2=-,因此y1+y2=k(x1+x2)+2m=.由题意知x1≠-x2,所以k1==-=.所以直线BD的方程为y+y1=(x+x1).令y=0,得x=3x1,即M(3x1,0).可得k2=-.所以k1=-k2,即λ=-.因此存在常数λ=-使得结论成立.(ii)直线BD的方程为y+y1=(x+x1),令x=0,得y=-y1,即N.由(i)知M(3x1,0),可得△OMN的面积S=×3|x1|×|y1|=|x1||y1|.因为|x1||y1|≤+=1,当且仅当=|y1|=时等号成立,此时S取得最大值,所以△OMN面积的最大值为.5.(大纲全国,22,12分)已知抛物线C:y2=2px(p>0)的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(新课标版)高考数学真题分类汇编 10.4 直线与圆锥曲线的位置关系 文

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部